Busseola fusca:
a Handbook of Information

Information Bulletin no. 33

International Crops Research Institute for the Semi-Arid Tropics

CAB International
Abstract

This two-part publication provides a comprehensive review of the biology and management of *Busseola fusca* (Fuller), the African maize stalk borer. The information is presented under subheadings of pest status and crop loss assessment, taxonomic descriptions, pest biology and ecology. Pest management practices involving a range of options—cultural, plant resistance, biological, legislative, and chemical methods—are also reviewed. Part 2 contains an annotated bibliography of nearly 400 references published between 1900 and 1990.

Résumé

Busseola fusca (Fuller), le foreur africain du maïs: un manuel d'informations. Cette publication en deux parties offre une étude globale de la biologie et la lutte contre *Busseola fusca* (Fuller), le foreur africain du maïs. Les informations sont organisées sous des aspects divers: statut du ravageur et estimation de la perte des cultures, descriptions taxonomiques, biologie et écologie de l'insecte, ainsi qu'un aperçu sur les diverses possibilités de lutte contre l'insecte nuisible : pratiques culturelles, méthodes biologiques, législatives et chimiques, y compris la résistance des plantes à l'insecte. La deuxième partie du document comprend une bibliographie annotée de près de 400 références publiées entre 1900 et 1990.

Resumen

Busseola fusca (Fuller), barrenador africano del maíz: manual de información. Esta publicación dividida en dos partes presenta un estudio global de la biología y lucha contra *Busseola fusca* (Fuller) (el barrenador africano del maíz). La información está organizada bajo diferentes aspectos: estatus de la plaga y estimación de las pérdidas en los cultivos, descripción taxonómica, biología y ecología del insecto. Las prácticas de manejo contra la plaga, incluyen una amplia gama de opciones—culturales, resistencia de las plantas, métodos biológicos, químicos y legislativos. La segunda parte del documento contiene una bibliografía detallada de más de 400 referencias publicadas entre 1900 y 1990.
Busseola fusca (Fuller),
the African Maize Stalk Borer:

a Handbook of Information

K.M. Harris and K.E Nwanze

Information Bulletin no. 33

ICRISAT
International Crops Research Institute for the Semi-Arid Tropics
Patancheru, Andhra Pradesh 502 324, India

C.A.B International
Oxon OX10 8DE, UK

1992
Contents

Preface

Acknowledgements

Part 1. Review of Bioecology and Management

Introduction

Pest Status and Crop Loss Assessment

Descriptions
- Adults
- Eggs
- Larvae
- Pupae

Biology and Ecology
- Life cycle
- Host plants
- Geographical distribution
- Larval development and behavior
- Larval diapause
- Carry-over populations
- Adult emergence, mating, and dispersal
- Oviposition
- Pathogens, parasitoids, and predators
- Population dynamics

Pest Management
- Cultural control
- Crop residues
- Tillage
- Trap crops
- Crop rotation
- Sowing dates
- Removal of deadhearts
- Removal of alternative host plants and volunteer crop plants
- Water management
- Fertilizer management
- Intercropping
- Plant resistance
- Biological control
- Chemical control
- Legislative control
- Other methods
- Light trapping
- Pheromone trapping and mating disruption
- Integrated pest management
Conclusions and Recommendations

Pest status and crop loss assessment 17
Biology and ecology 18
Pest management 18

References 19

Part 2. Annotated Bibliography, 1900-1990

Introduction 29

Main Entries
General 30
Descriptions (Taxonomy) 34
Biology, ecology, pest status, and crop loss assessment 34
Pest management (general) 53
Cultural control 55
Plant resistance 60
Biological control and natural enemies 63
Chemical control 68
Legislative control 74
Other control methods 75
Integrated pest management 76

Author Index 79

Directory of Institutions and Researchers 83
Preface

In November 1987, an international workshop on sorghum stem borers was held at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. One of the recommendations of that workshop was that the information on sorghum stem borers, embedded in published and unpublished documents produced since the beginning of this century, should be made more generally accessible to potential users in the fields of research and extension. *Busseola fusca* (Fuller) was identified as the target species to be covered in this, the first information handbook on the main stem borer species. It is a major pest, especially on maize and sorghum, throughout Africa south of the Sahara and therefore merits a review of the information that has been derived from observation and research in Africa over the past 90 years. This handbook is organized into two main parts. The main objective of Part 1 is to provide concise summaries of information, based on a comprehensive, but not exhaustive, review of published and unpublished work. Such a review will hopefully provide a useful basis for decisions that will have to be made at local, national, and regional levels to develop effective management of *B. fusca* and other pests of cereal crops in Africa. Part 2 consists of an annotated bibliography containing nearly 400 references covering 90 years of research on *B. fusca*. A directory of institutions and researchers based on existing information and personal contacts is provided at the end of this publication.

Although this handbook covers a wide range of topics, it can only provide entry points into the store of information on this species, and it will need to be updated as new information becomes available. It is however, increasingly easy to maintain current awareness through information networks, such as the one based on ICRISAT's Semi-Arid Tropical Crops Information Service (SATCRIS) or through access to on-line databases, such as *CAB ABSTRACTS*, which generates the *Review of Agricultural Entomology* (formerly the *Review of Applied Entomology, Series A*). Access to original publications can also be provided through ICRISAT's and/or CAB International's Library Services. The annotated bibliography in this publication is also available from ICRISAT as a CDS/ISIS database.

Acknowledgements

This project was initiated by L.J. Haravu, Manager, Library and Documentation Services, ICRISAT. Funding was provided by the Canadian International Development Research Centre (IDRC) as part of its support to SATCRIS. Preparation of the handbook was supported by our colleagues in ICRISAT and in CAB International, whose assistance is gratefully acknowledged. We also thank authors of current and past publications who have provided reprints for deposit in the ICRISAT Library.

The annotated bibliography, which comprises Part 2, was prepared by S. Prasannalakshmi and M. Suguna Sri of ICRISAT's Library and Documentation Services.

Photographs of field symptoms and stacked stems (Figs. 1, 4, and 11) are copyright of K.M. Harris. Additional illustrations have been made available by the Natural History Museum, London, UK (Figs. 5, 6, and 8), R. Chapman (Fig. 7), M.Y. Hudson (Fig. 9), K.F. Nwanze (Fig. 2), O. Ajayi (Fig. 3), and K.V.N. Maes (Fig. 4).
Part 1

Review of the Bioecology and Management of *Busseola fusca* (Fuller)

K.M. Harris and K.F. Nwanze
Introduction

The African maize stalk borer, *Busseola fusca* (Fuller), was described and named by Fuller (1901) and the technical description with type designation published a year later by Hampson (1902). It is a noctuid moth, closely related to the genus *Sesamia*, and its larvae feed inside the stems of grasses and cereal crops, especially maize and sorghum. It was first recognized as a pest of maize in South Africa, where much of the early work on its biology and control was done, but it is now known to be a species that is indigenous to tropical Africa. It occurs widely in mainland Africa south of the Sahara, but not on the islands of the Indian Ocean. It is not known to occur anywhere outside the African continent, although there must be some danger that it could be accidentally introduced elsewhere.

The first detailed review of the biology, ecology, and control of this species by Mally (1920) contains 103 references, mostly to work done in South Africa up to 1919. Since that date, research has been extended throughout most of Africa, especially southern Africa (Zimbabwe, Zambia), eastern Africa (Kenya, Uganda, and Tanzania) and West Africa (Nigeria, Ghana, and Cote d'Ivoire). In recent years particular impetus has been given to the study of this species by scientists working throughout Africa in national programs on cereal crop development, and by international organizations, especially ICRISAT and the International Centre of Insect Physiology and Ecology (ICIPE). Research progress in the 1980s was reviewed by Harris (1989a) who also recently reviewed the bioecology of *B. fusca* (Harris 1989b).

Much information is available on this species and could be used to devise effective pest management strategies, but there are still substantial gaps in our knowledge of this pest, as indicated in the conclusions and recommendations of this handbook.

Pest Status and Crop Loss Assessment

Busseola fusca is of greatest importance as a pest of maize in Africa but it also attacks other cultivated crops, particularly sorghum, pearl millet, and sugarcane, and some wild grasses. Damage is caused by the larvae which at first feed on the young leaves (Fig. 1) but soon tunnel into the stems. During the early stages of crop growth, larvae may kill the growing points, resulting in the production of ‘deadhearts’ (Fig. 2) and a consequent loss of crop stand. At later stages of growth extensive tunneling (Fig. 3) inside the stems weakens them so that they break and lodge. Maize cobs may be directly damaged by tunneling larvae (Fig. 4) and the grain development of sorghum and pearl millet may be indirectly affected by tunneling and breakage of peduncles.

Although it is generally accepted that *B. fusca* is a major pest of maize and an important pest of sorghum, few objective crop loss assessments have been made. Most studies only report infesta-
tion levels or the degree of crop damage rather than actual grain losses. The most rigorous studies are those of Walker (1960b) in Tanzania, and Walker and Hodson (1976) in Kenya, that indicated a loss of about 12% maize grain for every 10% plants infested. Crop loss experiments on sorghum in Nigeria (Harris 1962) indicated a complex situation where selective oviposition by females on larger plants results in bored stems producing higher grain yields than unbored stems. It is generally true that sorghum is more tolerant of borer attack than maize, and that acceptable yields can be obtained despite high borer populations. Megenasa (1982) reported that in Ethiopia, movement of *B. fusca* larvae into the base of the sorghum head resulted in undersized heads and a 15% grain loss.

Descriptions

Taxonomic descriptions, diagnoses, and keys for identification were published by Tarns and Bowden (1953), and there has been no subsequent taxonomic revisionary work on this species. Kaufmann (1983) suggested that subspeciation may be in progress in Nigeria, but the evidence needs corroboration by further observations and experiments.

Adults

Adult moths are seldom seen in farmers' fields as they are inactive during daylight and are cryptically colored. However, they are attracted to light traps and are sometimes caught in large numbers. The adult wingspan is about 20-40 mm (Fig. 5), with females generally larger than males. The forewings are light to dark brown, with patterns of darker markings, and the hind wings are white to grey-brown. There is much seasonal and geographic variation; moths developing in colder, wetter conditions tend to be darker in color, with heavier black markings (Fig. 6). Wing pattern and color do not therefore provide absolutely reliable characters for positive identification, especially as other species of *Busseola* and similar genera, such as *Manga* and *Poeonoma*, resemble *B. fusca* in general appearance.
Eggs

Eggs measure about 1 mm in diameter. They are hemispherical and have about 70 crenulations (ridges) on the egg shell (chorion). They are generally laid in batches of 30-100 on the inner surfaces of leaf sheaths (Fig. 7) or on other smooth surfaces.

Larvae

The stem-boring caterpillars of *B. fusca* are about 40 mm long when full grown (Fig. 8). Their color is variable, but is usually creamy white, often with a distinctive grey tinge, but sometimes with a pink suffusion, similar to that of most *Sesamia* larvae. The head is dark brown and the prothorax is yellowish-brown. Larval chaetotaxy has been described (Tarns and Bowden 1953, Usua 1969,
and can be used to distinguish *B. fusca* larvae from *Sesamia* larvae, that are otherwise very similar. The arrangement of crochets on the abdominal prolegs readily distinguishes *Busseola* and other noctuid larvae from such pyralid stem borers as *Chilo*. The noctuid prolegs have the crochets arranged in a semicircle, whereas the pyralid proleg crochets are arranged in a complete circle.

Pupae

Pupae are usually shiny yellow-brown (Fig. 9) but their color may vary with location. Female pupae are about 25 mm long, and male pupae are generally slightly smaller. They can be sexed by differences in the positioning of the genital scars, found on sternum 8 in females and on sternum 9 in males.

The cremaster bears a single pair of simple spines. *Busseola fusca* pupae can therefore be distinguished from those of *Sesamia*, which have a more complex cremaster with two pairs of thorn-like spines.

Figure 6. *Busseola fusca*, live adult male on maize.

Figure 7. *Busseola fusca*, egg mass under a leaf sheath.
Biology and Ecology

The biology of this species was recently reviewed by Harris (1989b) and a detailed study of its ecology on maize in South Africa made by van Reensburg et al. (1987). Earlier key papers include Mally (1920), Wahl (1926, 1930), Hargreaves (1932, 1939), Lefevre (1935), du Plessis (1936), du Plessis and Lea (1943), Bowden (1956b), Swaine (1957), Ingram (1958), Nye (1960), Smithers (1960), Walker (1960b), and Harris (1962, 1964).

Life Cycle

There are local variations in life cycle, determined mainly by climate, but the basic pattern is as follows. Adults emerge from pupae in the late afternoon and early evening and are active at night. During the day they rest on plants and plant debris and are seldom seen unless disturbed, when they fly briefly. Usually on the night of emergence the females release a pheromone to attract males and then mate. During the 3—4 nights following emergence, females lay eggs in batches of 30-100 under the inner surfaces of leaf sheaths, each female laying about 200 eggs in total.

Larvae hatch about a week later and initially disperse over plants before they enter the leaf whorls and start to feed on the leaves. Once established in their host plants, they bore into stem tissues and feed for 3-5 weeks, producing extensive tunnels in stems and in maize cobs. They then pupate in the tunnels, often after first excavating emergence windows to facilitate the exit of adult moths.

Adults emerge 9—14 days after pupation and the life cycle is completed in 7-8 weeks when conditions are favorable. During dry and/or cold weather, larvae enter a diapause of 6 months or more in stems, stubble, and other plant residues before pupating during the next favorable period.

There is still a lack of adequate studies of the biology of B. fusca in many areas; the studies that have been undertaken have not used a uniform approach and are often restricted to a particular crop.

Host plants

Busseola fusca belongs to a group of Lepidoptera that has evolved in close association with grasses, and in which the specialized habit of boring into stems has developed. These evolutionary interactions have developed over the last 10-20 million years, and the association of these stem-boring species with cultivated crops, which originated about 5000 years ago, is therefore comparatively recent. The original host plant on which B. fusca evolved is not known, but the following indigenous African grasses are recorded as hosts: Sorghum verticilliflorum (Steud.) Piper (including Sorghum arundinaceum), Pennisetum purpureum.
Schum., Panicum maximum Jacq., Hyparrhenia rufa Nees (Stapf), Rottboellia exaltata (L.), and Phragmites sp. The original host may well have been one of these, possibly a Sorghum or Pennisetum.

The main crop hosts are maize and sorghum and, to a lesser extent, pearl millet, finger millet, and sugarcane. Of these, all except maize and sugarcane are indigenous to Africa.

The interaction of B. fusca with maize is particularly interesting as it dates from about 1550 A.D., from the time of the introduction of that crop to Africa from the Americas. The extension of maize cultivation in Africa may have enabled
the borer to follow the crop and become established in new areas, such as South Africa, as suggested by Mally (1920).

Geographical Distribution

Busseola fusca occurs throughout mainland Africa south of the Sahara and has been formally recorded from West Africa (Benin, Burkina Faso, Cameroon, Cote d'Ivoire, Ghana, Guinea, Mali, Nigeria, and Sierra Leone), from eastern Africa (Ethiopia, Kenya, Somalia, Tanzania, and Uganda), and from southern Africa (Angola, Botswana, Lesotho, Malawi, Mozambique, Rwanda, South Africa, Swaziland, Zaire, Zambia, and Zimbabwe). Distribution maps (Fig. 10) have been published by the Intercontinental Phytosanitary Council, IAPSC (1985), and by the CAB International Institute of Entomology, CIE (1988). In West Africa, _B. fusca_ occurs from sea level to altitudes in excess of 2000 m but is most abundant in the wetter parts of the tree savannah in Ghana (Tarns and Bowden 1953) and Burkina Faso (Nwanze 1988), and in the drier regions of the tree savannah and thorn scrub savannah in Nigeria (Harris 1962), where sorghum is extensively grown. There is some evidence to suggest that it does not immediately become established as a pest in recently settled areas (Harris 1962, Ingram 1958). In eastern Africa it occurs between 600 and 2700 m and is absent from the coastal areas of Kenya and Tanzania. Nye (1960) suggested that the species is unable to tolerate mean temperatures above 25°C, but this is not so in West Africa where mean temperatures above 27°C are tolerated.

In southern Africa, _B. fusca_ is the dominant stem borer at elevations above 900 m in Botswana, Lesotho, Malawi, Mozambique, South Africa, and Swaziland, but it also occurs at lower altitudes in those countries and in Zimbabwe, clearly indicating the ability of this pest to adapt to low-lying and warmer areas (Sithole 1989).

Larval Development and Behavior

The behavior of first-instar larvae is similar to that described for _Chilo partellus_ by Chapman et al. (1983) and Bernays et al. (1985) but has not been studied in such detail. Soon after hatching, the larvae move up to the leaf funnel and feed on the young leaves before penetrating into the stem. Leaf feeding results in characteristic patterns of small holes that appear on the youngest leaves. During the stage of larval feeding in the stem, the growing point may be killed, resulting in a deadheart. Van Rensburg et al. (1987), working on maize in South Africa, recorded that 81% of larvae up to the fourth instar were found in leaf whorls.

The period of larval feeding lasts about 24—36 days and during that time larvae may leave the stem that was initially attacked, especially if it has been severely damaged, and bore into other stems. There is therefore some larval migration within crops. Van Rensburg et al. (1987) noted that previous workers underestimated the extent of this migration, and recorded that 4% of the total number of larvae in a planting of maize migrated to adjacent plants immediately after hatching. They also observed that fifth-instar larvae were evenly distributed in plants reaching a peak at 8 weeks after plant emergence, and that sixth instars were found in considerably larger numbers than previous instars in stems and ears, and were the only instars found in stem bases.

Before pupation, larvae eat away exit holes to facilitate their emergence as adult moths. These holes are characteristically covered by a thin remaining layer of epidermis and are visible externally, giving an indication that pupation has occurred or is about to occur.

Larval Diapause

In dry and/or cold conditions larvae enter diapause for 6 months or more. Usua (1970, 1974) studied the physiology of diapause in detail on maize in southern Nigeria, but there is as yet no clear understanding of the factors inducing and breaking diapause (van Rensburg et al. 1987). Usua (1970) noted that diapausing larvae are present throughout the year, irrespective of the condition of the host plant, but with peak incidence in July and December, and suggested that the induction of diapause is under genetic control. He also observed that the main factor enabling larvae to survive adverse conditions in diapause seems to be their efficient conservation of water. Diapause is normally terminated as rainfall increases during the subsequent growing season.
At the end of the diapause period, the availability of free water, which the larvae drink, facilitates rehydration and stimulates pupation (Harris 1962). Subsequent studies by Adesiyun (1983a) showed that contact with water in the vapor state (i.e., higher relative humidity), rather than direct intake, promoted diapause termination.

Unnithan and Reddy (1989) observed diapaus-ing populations of *B. fusca* larvae in sorghum crop residues on Rusinga Island, Lake Victoria, Kenya, and recorded that most of the second generation *B. fusca* in the long-rain sorghum and maize crops entered aestivation diapause in July/August. This diapause terminated from late November onwards, and resulted in peak adult emergence in February. Rainfall alone was not considered to be the main factor terminating diapause as pupation continued over an extended period, and some larvae pupated even though they had not been exposed to water. However, recent findings by Okuda (1988, 1990) confirmed earlier studies by Adesiyun (1983a) and revealed that water contact is more significant than water uptake as a factor in diapause termination. Gebre-Amlak (1989) also reported that a cumulative rainfall of about 80 mm or above from March onwards was necessary to induce pupation in diapaus-ing larvae in southern Ethiopia.

Carry-over Populations

The main carry-over from one growing season to the next is as diapause larvae in stems, stubble, and other crop residues. Harris (1964) demonstrated that substantial larval populations can survive in stacks of sorghum stems stored during the dry season on farmers’ fields and in villages in northern Nigeria (Fig. 11). It has long been known that larvae of this species survive in maize stubble in South Africa (Mally 1920). Some larvae may also survive on wild grass hosts, and it is important to maintain a general ecological approach to stem borer control strategies, as advocated by Bowden (1976). However, it is probably true that in many parts of Africa crop residues are the main source of initial stem borer infestations in subsequent seasons. Recent work in Kenya, reported by Unnithan and Reddy (1989) showed that on Rusinga Island, Lake Victoria, sorghum crop residues (stalks and stubble) ensured carry-over of diapause larvae through the off-season from July/August to February/March in sufficient numbers to establish early and dam-ageing infestation of the following crop.

Adult Emergence, Mating, and Dispersal

Adults mostly emerge between sunset and midnight, and soon after emergence the females release a pheromone, consisting of a 10:2:2 mixture of (Z)-11-tetradecyl acetate, (E)-11-tetradecyl acetate and (Z)-9-tetradecyl acetate to attract males (Nesbitt et al. 1980, Hall et al. 1981). Mating behavior has not been reported in detail.
Soon after mating is completed, female moths disperse in search of suitable host plants for oviposition. The period of oviposition continues over 3-4 successive nights. The extent of adult dispersal during this period has not been established, although the indications are that it is mainly local. Mally (1920) indicated that female moths located and moved to crops from an emergence site at least a mile away. Migration over longer distances has not been reported, although it would seem feasible in some circumstances. Further study of this point is merited, especially since there are occasions when the incidence of *B. fusca* attack on early-sown crops is higher than can be explained by local circumstances.

Oviposition

Direct observations of oviposition have seldom been made, mainly because this is a nocturnal activity of the female moths. Van Rensburg et al. (1987) reported briefly on selective oviposition on maize in South Africa, where the ovipositional response is related to plant age. Maize plants are most attractive to ovipositing moths 3-5 weeks after the crop emerges. Plants younger than 2 weeks or older than 6 weeks were not selected for oviposition, although when younger plants were not available during the second-generation flight, oviposition occurred on plants older than 6 weeks in late sowings. The preferred leaf sheath for oviposition is that of the youngest fully unfolded leaf, so that the oviposition site gradually moves up the plant as the crop gets older. Evidence of selective oviposition on larger plants was obtained in a later study (van Rensburg et al. 1989) by using two maize hybrids with different average stalk circumferences. Significantly more and larger egg masses were laid on the hybrid with thicker stalks. Selection of vigorous plants by ovipositing females in field situations can probably be ascribed to an olfactory response and location of suitable ovipositing sites is probably thigmotactic. Differential oviposition appears to be a mechanism to promote larval survival since larger plants can better tolerate prolonged larval feeding. This phenomenon is also of possible importance in crop loss assessment studies since primary stem borer infestations will tend to be concentrated on potentially higher-yielding plants.

Adesiyun (1983b) reported the results of experiments in northern Nigeria in which ovipositing females chose between sorghum, maize, and millet plants. In field plots and in cages, most eggs were laid on sorghum, followed by maize, and no eggs were laid on millet in field experiments or in cages in a no-choice test. Kaufmann (1983) reported the development of parthenogenetic eggs. Parthenogenetic development has been recorded in more primitive families of Lepidoptera, and in a species of Australian Geometridae, but this seems to be the only record of parthenogenetic development in any noctuid moth and therefore requires confirmation.

Pathogens, Parasitoids, and Predators

Many pathogens, parasitoids, and predators of *B. fusca* have been reported in Africa but there have been virtually no rigorous assessments of their importance as factors limiting pest populations. Mohyuddin and Greathead (1970) published a useful annotated review, partly based on an unpublished report by Milner (Final report on a survey of the parasites of graminaceous stem-borers in eastern Africa, Kawanda, Uganda: Commonwealth Institute of Biological Control, East Africa Station. 159 pp). They concluded that the most important parasitoids of *B. fusca* in eastern Africa were *Cotesia sesamiae* [=*Apanteles sesamiae*], *Sturmiopsis parasitica*, *Procerochasmias glaucopterus*, and *Pediobius furvus*, and they also noted the parasitoids that they considered to be of minor importance, uncommon and incidental, or of doubtful or ambiguous status. They reviewed information on predators and concluded that ants are important.

The main pathogens, parasitoids, and predators indigenous to Africa are listed in Table 1 with references. This table does not include exotic species that have been introduced to Africa for attempted biological control of stem borers, as these are noted in the section on pest management.

Pathogens/Micro-organisms. The most concerted recent research on pathogens has been based at the Mbita Point Field Station of ICIPE where Odindo (1985) recorded infections of larval cadavers of stem borers, including *B. fusca*, and noted high incidence of bacteria (77.8%) and fungi...
Table 1. Natural enemies of *Busseola fusca* indigenous to Africa.

<table>
<thead>
<tr>
<th>Species</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATHOGENS</td>
<td></td>
</tr>
<tr>
<td>Aspergillus flavus Link/A. Sydowii Bainier Sartory Thorn & Church</td>
<td>Nigeria; but these may not be true pathogens (Harris 1962).</td>
</tr>
<tr>
<td>Bacillus thuringiensis (Berliner)</td>
<td>Nigeria (Harris 1962).</td>
</tr>
<tr>
<td>Beauveria bassiana (Bals.) Vuillemin Beauveria sp.</td>
<td>South Africa (van Rensburg et al. 1988).</td>
</tr>
<tr>
<td>Extremely rare (Mohyuddin and Greathead 1970).</td>
<td></td>
</tr>
<tr>
<td>Kenya (Odindo 1985).</td>
<td></td>
</tr>
<tr>
<td>PARASITOIDs</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td></td>
</tr>
<tr>
<td>Charops sp.</td>
<td>Eastern/West Africa (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Dentichasmias busseolae Heinrich</td>
<td>Eastern/West/southern Africa; but only one record from B. fusca, all others from pyralids (Mohyuddin and Greathead 1970, Mohyuddin 1972).</td>
</tr>
<tr>
<td>Enicospilus sp.</td>
<td>Eastern Africa; but uncommon (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Ichneumon rubriornatus Cameron</td>
<td>South Africa (van Rensburg et al. 1988).</td>
</tr>
<tr>
<td>Procerochasmias glaucopetus (Cameron) [P. nigromaculatus (Morley)]</td>
<td>Eastern Africa; above 1220 m (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Syzeuctus sp.</td>
<td>Eastern/West Africa; but extremely rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Vadonina sp. [genus nr Isotima sp.]</td>
<td>Eastern/West Africa; but extremely rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Braconidae</td>
<td></td>
</tr>
<tr>
<td>Amicrocentrum curvinervis Cameron Apanteles sp. nr laevigatus (Ratzeburg)</td>
<td>Uganda (van Achterburg 1979).</td>
</tr>
<tr>
<td>Bracon sesamiae Cameron/Bracon spp.</td>
<td>Eastern/West Africa; but rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Chelonus curvimaculatus Cameron</td>
<td>South Africa (Cameron 1906, van Rensburg et al. 1988); Eastern Africa (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Chelonus sp.</td>
<td>Eastern Africa; one record (Mohyuddin and Greathead 1970); South Africa (Kfir 1988).</td>
</tr>
<tr>
<td>Cotesia sesamiae (Cameron) [Apanteles sesamiae Cameron]</td>
<td>South Africa (Kfir 1988).</td>
</tr>
<tr>
<td>Syzeuctus sp.</td>
<td>Eastern/West Africa (Mohyuddin and Greathead 1970); South Africa (Kfir 1988).</td>
</tr>
<tr>
<td>Kenya; reared once (Mohyuddin and Greathead 1970).</td>
<td></td>
</tr>
<tr>
<td>Chalcididae</td>
<td></td>
</tr>
<tr>
<td>Psilochalcis soudanensis (Steffan) [Inveeria soudanensis (Steffan)] [Hyperchalcidia soudanensis Steffan]</td>
<td>Eastern/West Africa (Mohyuddin and Greathead 1970); but may be mainly a parasitoid of smaller Lepidoptera, especially pyralids (Boucek 1988).</td>
</tr>
<tr>
<td>Pteromalidae</td>
<td></td>
</tr>
<tr>
<td>Norbanus sp. Sphegigaster sp. [Trigonogastra sp.]</td>
<td>Zimbabwe (CIE unpublished record).</td>
</tr>
<tr>
<td>Kenya (Nye 1960); but species of this genus are mainly parasitoids of Diptera, especially agromyzids (Boucek 1988).</td>
<td></td>
</tr>
</tbody>
</table>

Continued.
<table>
<thead>
<tr>
<th>Species</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eulophidae</td>
<td></td>
</tr>
<tr>
<td>Pediaobius furvus (Gahan)</td>
<td>Eastern/West Africa; widespread but more abundant in drier areas (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Trichogrammatidae</td>
<td></td>
</tr>
<tr>
<td>Lathromeris ovicida (Risbec)</td>
<td>Uganda; but rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Paracentrobia dimorpha (Kryger) [= Abbella dimorpha Kryger]</td>
<td>Uganda; but rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Trichogrammatidae</td>
<td></td>
</tr>
<tr>
<td>Lathromeris ovicida (Risbec)</td>
<td>Uganda; but rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Paracentrobia dimorpha (Kryger) [= Abbella dimorpha Kryger]</td>
<td>Uganda; but rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Scelionidae</td>
<td></td>
</tr>
<tr>
<td>Telenomus busseolae Gahan</td>
<td>Eastern/West Africa (Mohyuddin and Greathead 1970); South Africa (van Rensburg et al. 1988).</td>
</tr>
<tr>
<td>Bethylidae</td>
<td></td>
</tr>
<tr>
<td>Prorops sp.</td>
<td>Tanzania; reared once (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>[Note: This record is almost certainly wrong: Prorops parasitizes Coleoptera.]</td>
<td></td>
</tr>
<tr>
<td>Sphecidae</td>
<td></td>
</tr>
<tr>
<td>Trypoxylon sp.</td>
<td>Ethiopia (Gebre-Amlak 1985).</td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
</tr>
<tr>
<td>Tachinidae</td>
<td></td>
</tr>
<tr>
<td>Actia spp.</td>
<td>Eastern/West Africa; but rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Nemoraea discoidalis Villeneuve</td>
<td>Eastern Africa; but rare (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Siphona murina Mesnil</td>
<td>Eastern Africa; but uncommon (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>Sturmiopsis parasitica (Curran)</td>
<td>Eastern/West Africa (Mohyuddin and Greathead 1970).</td>
</tr>
<tr>
<td>[Note: Records of Palexorista imberbis (Wiedemann) [= Drino imberbis Wiedemann] and of Paradrino halli (Curran) (= Drino halli Curran) from Tanzania by Robertson (1975) and of Carcelia evolans (Wiedemann) (= Zenillia evolans Wiedemann) from Zimbabwe by Cuthbertson (1936) have not been confirmed by subsequent rearings and are probably erroneous. Records of Atherigona sp. (Muscidae), of Sarcophaga villa Curran (Sarcophagidae) and of Megaselia scalaris (H. Loew) (Phoridae) as parasitoids of Busseola fusca are also unlikely to be correct. Similarly, the record of Ellassogaster arcuata Hendel (Platystomatidae) by van Rensburg et al. (1988) must be confirmed by further observations.]</td>
<td></td>
</tr>
<tr>
<td>PREDATORS</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td></td>
</tr>
<tr>
<td>Formicidae</td>
<td></td>
</tr>
<tr>
<td>Dorylus affinis Schuckard</td>
<td>Nigeria (Harris, 1962).</td>
</tr>
<tr>
<td>Dorylus helvolus (Linnaeus)/ Pheidole megacephala Fabricius</td>
<td>South Africa (Kfir 1988).</td>
</tr>
<tr>
<td>Orthoptera</td>
<td></td>
</tr>
<tr>
<td>Tettigoniidae</td>
<td></td>
</tr>
<tr>
<td>Clonia vittata Thunberg</td>
<td>South Africa (Akerman 1932).</td>
</tr>
<tr>
<td>Dermaptera</td>
<td></td>
</tr>
<tr>
<td>Diaperastus erythrocephala (Olivier)</td>
<td>Ethiopia (Gebre-Amlak 1985).</td>
</tr>
</tbody>
</table>
(19.2%), and lower incidence of protozoans (7.9%) and nematodes (2.9%). Later, Odindo et al. (1989) reported a survey in western Kenya to determine the prevalence of micro-organisms in late-instar stem borer larvae in the maize crop at harvest and recorded bacteria, fungi, viruses, mermithids, rhabditids, and microsporidia. They concluded that there did not appear to be any epizootics in crop borers in the field and noted that, since stem borer larvae are seldom in contact and usually bore into stems singly, the high larval populations and close contacts that are predisposing factors for the development of epizootics do not operate.

Parasitoids. All recorded parasitoids are insects, mainly parasitic Hymenoptera, but also Tachinidae. Many different species have been recorded, but the validity of some records is doubtful and confirmation by careful observation, rearing, and authoritative identification is needed before some of these published records can be accepted as valid.

Predators. Records of predation are also mainly of insects. There seem to be few records of predation by vertebrates (birds and small mammals), which is surprising since final-instar larvae and pupae must provide a useful food resource, especially during dry periods. Recent work by Kfir (1987) emphasizes the importance of predation by the ant *Pheidole megacephala* Fabricius on hibernating larvae of *B. fusca* in dry sorghum stems. Ants have also been recorded as predators of stem borer eggs.

The general conclusion must be that much remains to be learned about the natural enemy complexes on *B. fusca* populations in various parts of Africa. There certainly seem to be some discontinuities of distribution which may indicate possibilities for biological control and, even if such manipulation is not possible, it is important that existing natural enemy complexes should be conserved by appropriate management.

Population Dynamics

Despite its importance as a pest of African food crops, the population dynamics of *B. fusca* do not seem to have been studied in any detail. At most locations, 2-3 generations are produced but in relatively humid areas a small population of larvae may pupate and give rise to a fourth adult generation. The first generation adults are produced from the diapausing larvae of the previous crop season, with moth flights occurring a few weeks after rains have begun, when maize/sorghum crops are 3-5 weeks old.

In West Africa, only two generations of *B. fusca* were observed on sorghum at Farako-Ba in Burkina Faso (Nwanze 1985, 1988) although at Zaria, in northern Nigeria, three generations were recorded (Harris 1962), recently confirmed by MacFarlane (1990). In Burkina Faso, larval populations peaked in mid-August and October, but a much earlier population peak occurs at Zaria in late June. Usua (1968b) recorded four larval generations on maize at Ibadan, southern Nigeria; two between April and July, one in September—October, and a fourth in November.

Three generations of *B. fusca* occur in Ethiopia (Gebre-Amlak 1989) with the first in May-June. A second generation occurs in July-September, and a third at the end of October. In South Africa, the number of generations on maize increases from two to three from east (Natal province) to west (Transvaal province), (Barrow 1989, van Rensburg et al. 1985). The first-generation moths emerge between October and December, the second in January, and the third in March. Towards the west, generations tend to overlap and seasonal variations in moth flight periods are less distinct. Similarly in Zimbabwe, two distinct generations are produced but a third generation may develop, depending on prevalent environmental conditions (Sithole 1989). The first-generation moths appear in early November, and the second generation in January-February.

At all locations, most of the last larval generation of *B. fusca* enters diapause. Although it is thought that the onset of diapause may be favored by the ageing of maize plants (Usua 1973), there is evidence that the rainfall gradient may contribute indirectly to geographic variation in population dynamics, and in the number of generations produced.

Pest Management

The overall approach to control of stem borers on crops in Africa must be to devise and implement integrated pest management programs that must
meet local needs and be adapted to local conditions and resources. There is wide scope for the development of such programs, that will be mainly based on nonchemical methods of control. The main elements are summarized below.

Cultural Control

Cultural methods of control have recently been reviewed by Verma and Singh (1989) and by Reddy (1985a), but necessarily relate to cereal stem borers in general, rather than to *B. fusca* in particular.

Crop residues. The importance of crop residues in carrying over larval populations from one growing season to the next has already been noted. Where destruction by burning or deep plowing is feasible, it may be possible to take concerted action to reduce carry-over populations and so limit the most damaging early borer infestations in the following season. However, this may not always be possible, especially in parts of West Africa where dry stems are used for fencing and building. It may then be necessary to devise means of killing diapause larvae without destroying the crop residues. This has been achieved by Adesiyun and Ajayi (1980) by partially burning sorghum stalks, killing 95% of *B. fusca* larvae, while at the same time curing the stalks and making them more suitable for building or for use as firewood. Simply leaving stems lying horizontally exposed to full sun in the fields for a month or so, rather than stacking them vertically, will also reduce the carry-over population, as has been shown in Ethiopia by Gebre-Amlak (1988) and in Nigeria by Harris (1962). Using crop residues for fodder and silage has also been recommended as a method of control (Wahl 1926).

Tillage. Deep plowing to bury maize stubble was one of the earliest control measures used against this pest in South Africa (Mally 1920). Jack (1918) reported that in Rhodesia (Zimbabwe) moths emerging through 5 cm of soil were crippled and that deeper burial of maize stalks under 10-15 cm of soil ensured that no adult moths emerged. Du Plessis and Lea (1943) reported that tillage only gave partial control but Walters (1975) emphasized the role of conventional tillage in controlling *B. fusca* in South Africa. More recent work reported by Kfir (1990) showed that, in the Transvaal, slashing maize and sorghum stems destroyed 70% of the stem borer population and that plowing and discing the crop residues after slashing destroyed a further 24% of the pest population in sorghum and 19% in maize. Macharia (1989), working in Kenya, reported the effects of various crop residue disposal practices resulting in the following reductions of *B. fusca* populations: cutting stumps (64% larvae, 14% pupae), partial burning (65% larvae, 17% pupae), deep plowing (67% larvae, 91% pupae), and harrowing (89% larvae, 97% pupae). Musick and Petty (1973) reported that no-tillage increased the incidence of *B. fusca*.

Trap crops. Du Plessis (1936) reported that trap cropping was not effective in South Africa although Jack (1922, 1928) had earlier recommended the use of sorghum or maize as trap crops in Rhodesia (Zimbabwe). Later Jack (1931) reported that maize sown as a trap crop was not effective because late rains delayed germination. There does not appear to have been any further serious consideration of this technique after the 1930s.

Crop rotation. Any crop rotation that extends the period between cultivation of successive maize and/or sorghum crops in the same fields may reduce borer infestations, but local dispersal of ovipositing moths is possible and may cancel out any local effects of crop rotation. There appears to be no information available on the effects of different rotations on *B. fusca* incidence.

Sowing dates. Swaine (1957) found that later sowings of maize in Tanzania were less affected by *B. fusca* than earlier sowings, and Abu (1986) has reported that early sowing of sorghum reduced infestation in Nigeria. In Ethiopia, Gebre-Amlak et al. (1989) observed that infestation of late-sown maize, attacked by second-generation *B. fusca*, was higher (22-100%) than early-sown maize attacked by the first generation (0-22%). In Malawi, Mchowa (1990) studied the effects of four sowing dates on the incidence of *B. fusca* in two varieties of sorghum (Serena and ZSV 1) and found that the incidence of this pest was highest in the first and fourth sowings of Serena, but highest on the second and third sowings of ZSV 1. The precise effects of different sowing dates, that result from the interactions of ovipositing
females with growing crops, will obviously vary with location and season, and accurate prediction of the resulting levels of infestation will generally require better understanding of those interactions than is currently available.

Removal of deadhearts. In sorghum, removal of deadhearts may kill borer larvae and encourage tillering but infestations are usually well established by the time the deadhearts appear, and prevention of infestation would be a preferable approach. However, some farmers in Nigeria, and probably elsewhere, do remove sorghum deadhearts when weeding and ridging the crop and this practice is probably beneficial, although there seems to be no experimental evidence available.

Removal of alternative host plants and volunteer crop plants. Wild grass hosts and volunteer crop plants are potential sources of infestation. They may be important at some locations but other crops and crop residues are probably much more important sources of infestation.

Water management. While irrigation may cause definite changes in plant growth and development, that may disrupt pest development, pest problems may also become severe under irrigated conditions. There are no reports available on the effects of water management on *B. fusca* infestations, but flooding of sugarcane fields and rice paddies is used in some countries to drown other stem-boring species (NAS 1969). On the other hand, continuous high soil moisture in dryland agriculture, resulting from irrigation, favors the production of several generations of the oriental corn borer, *Chilo agamenmon* Bleszynski in both Israel (Rivnay 1967), and Egypt (Ali 1977).

Fertilizer management. Most of the published studies on the relationship between the use of nitrogen fertilizers and cereal stem borer infestations have been on rice. Similar studies on maize and sorghum are limited and have involved other species of stem borers. There seem to have been no such studies on *B. fusca*.

The general indication is that high soil fertility results in increased stem borer infestation (Lawani 1982). This trend is attributed to better crop growth, which attracts ovipositing moths and increases the rate of larval-survival.

Intercropping. Adesiyun (1983b) studied the effects of intercropping sorghum, maize, and pearl millet in Nigeria, and concluded that the almost total inability of *B. fusca* females to oviposit effectively on millet resulted in a reduction in stem borer infestations in sorghum intercropped with millet, a common farming practice in northern Nigeria and in other dry areas of West Africa. Work in Kenya by Amoako-Atta and Omolo (1983) indicated that maize/cowpea/sorghum or sorghum/cowpea intercropping systems gave the best control of *B. fusca*. Similarly, Omolo (1986) showed that sorghum in monoculture and sorghum intercropped with maize suffered more damage by *B. fusca* than sorghum/cowpea or sorghum/cowpea/maize intercrops, but Dissemend and Weltzien (1986), also working in Kenya, reported that sorghum/cowpea intercropping had no effect on borer incidence. Later work in Kenya (Reddy and Masyanga 1988) on sorghum/cowpea intercropping indicated that alternating two rows of sorghum with two rows of cowpea reduced *B. fusca* damage by 20% compared to monocropped sorghum. In other studies, Omolo and Reddy (1985) showed that *B. fusca* infestations were higher in sorghum or maize monocrops than in a sorghum/maize intercrop.

Plant Resistance

Host-plant resistance has been successfully used in the control of lepidopterous stem borers, and the often-cited example of the European corn borer, *Ostrinia nubilalis* (Hubner) in North America is a classic case. Some progress has also been reported with the spotted stem borer of maize and sorghum, *Chilo partellus* (Swinhoe), in Africa and Asia (Taneja and Leuschner 1985, Reddy 1985b). In general, host-plant resistance as a method of control is environmentally safe, economically acceptable to farmers, and the most compatible with other components in integrated pest management schemes.

Although there were early attempts to develop maize cultivars resistant to *B. fusca* (du Plessis and Lea 1943, Ingram 1958, Walters 1974) it is only within recent years that concerted efforts have been made (Barrow 1985, 1989, Reddy 1985b, Kundu 1985).

A major handicap in breeding for resistance to *B. fusca* has been the lack of efficient screening techniques. Most studies have been conducted
under natural infestations in ‘hot-spot’ locations where several species of stem borers may infest the same crop. Several attempts were made in South Africa to rear *B. fusca* artificially on meridic diets, but these were unsuccessful due to poor survival of first-instar larvae and the inability to break larval diapause. Barrow (1989), working in South Africa, developed an elaborate method that involves field collection of large numbers of diapausing larvae, storage in a cold room and time-spaced exposure of batches of larvae to laboratory temperatures to induce pupation, moth emergence, and oviposition, followed by egg collection and incubation to produce first-instar larvae which are then used for artificial infestation.

Field infestation is achieved by using a mixture of maize meal (100 g) and first-instar larvae (600 mg) dispensed by a mechanical applicator into the plant funnels. Plants are infested at a height of about 35 cm with two doses of this mixture. This results in infestation rates of about 16-22 larvae per plant. Usua (1968a) used 1-5 larvae per plant and Ingram (1958) used 5 larvae per plant, with varying degrees of success.

Plant reaction to stem borers is measured by various parameters: leaf damage, deadhearts, dead plants, ear damage (in maize), stem tunneling, chaffiness of panicles (*in* sorghum), plant height, and grain-yield reduction. There has been no concerted attempt to standardize rating systems for the measurement of damage and there is an obvious need to reach agreement on methods that will be widely applicable and comparable. Barrow (1985) rated leaf damage in maize on a scale of 1-5 (1 = very little damage; 5 = severe damage) under artificial infestation 25 days after larval feeding, and Kundu (1985), working in Somalia, rated leaf damage on maize under natural infestation 42 days after crop emergence on a 1-9 scale where 1 = free from injury, and 9 = maximum injury. MacFarlane (1990), working on sorghum over 3 years in northern Nigeria, developed a new visual rating system which, in combination with the number of nodes bored, gave the best relationship to grain mass per head.

Screening sorghum germplasm for resistance to *B. fusca* under natural infestation has also been reported from Zimbabwe and Kenya (Sithole 1987, 1988, Gebrekidan 1985), although these studies involve complexes of different stem borer species. Several maize and sorghum genotypes with low to medium levels of resistance to *B. fusca* have been reported. Barely 1% of the nearly 6000 indigenous sorghum genotypes that were evaluated in Ethiopia were classified as promising tolerant lines (Gebrekidan 1985). In Kenya, 20 sorghum genotypes were reported to have performed well against a complex of four different species of stem borer (Reddy 1985b). Kundu (1985) reported four least-susceptible high-yielding maize cultivars in Somalia against a complex of three borer species that included *B. fusca*. In South Africa, several lines of maize have been identified with intermediate levels of resistance to first-generation (whorl-feeding) larvae, but there is no information on resistance to the second-generation larvae, which cause ear and stem damage (Barrow 1989). There is very limited information on the mechanisms of, and factors associated with, resistance to *B. fusca*. Preference for oviposition sites was reported by van Rensburg et al. (1987) and was attributed to differences in plant age, with plants at 3-5 weeks after emergence being the most attractive. Later studies by van Rensburg et al. (1989), ascribed an olfactory response in the selection of oviposition sites. They detected differences in the number and size of egg batches obtained from two maize hybrids but also associated this to differences in stalk thickness. Barrow (1985, 1989) suggested that one or two factors related to antibiosis were present in maize: a short-lived but effective factor that reduces larval numbers, and a longer-lasting factor that retards larval development. However, both levels were too low for incorporation into breeding material and a program to increase the level of resistance was recommended. Preliminary evidence from maize (Barrow 1989) indicates that inheritance of resistance appears to be additive. Two approaches are currently used to breed for resistance in South Africa: population improvement, and the development of inbreds.

Biological Control

Biological control has been effectively used against stem borers on sugarcane in the Caribbean and might be expected to have potential for use against *B. fusca* and other stem borers of cereal crops in Africa. Mohyuddin and Greathead (1970) in reviewing the situation, noted that a
large number of hymenopterous parasitoids of cereal stem borers are known from Asia, and recommended that five of these [Cotesia flavipes Cameron, C. chilonis (Munakata), Bracon chimenis Szepligeti, B. onuki Watanabe and Sturmiopsis inferens (Townsend)] should be considered for introduction into eastern Africa. They also recommended distribution of Invreia soudanensis (Steppan) and Sturmiopsis parasitica (Curran) within Africa, as the ranges of these two species seemed to be restricted by geographic barriers. Gilstrap (1985) assessed the potentials for miopsis inferens Immelmann, and they recommended distribution of B. onuki Watanabe (but without detailed recommendations), and Betbeder-Matibet (1989) reviewed some of the attempts made to implement biological control of stem borers (but without direct reference to B. fusca). Ingram (1983) also reviewed the situation in Africa but did not make any particular comment on B. fusca. However, he did emphasize the need for further critical ecological studies to pinpoint areas where additions of further parasitoid species are most likely to be effective. He also stressed that little is known about predation on stem borers, other than occasional references to ants attacking eggs and first-instar larvae. Skoroszewski and van Hamburg (1987) reported the introduction of Cotesia flavipes (Cameron) [= Apanteles flavipes (Cameron)] against Chilo partellus and B. fusca on maize in South Africa but, although C. flavipes became temporarily established, it was not recovered after the winter.

Maafy (1975) reported that some exotic species of Trichogramma showed high fecundity and helped to control stem borers, including B. fusca, in Ghana. Kfir (1989) has also reviewed the prospects of biological and cultural control of lepidopterous stem borers (including B. fusca) in South Africa, where a number of different exotic parasitoids have been released. To date, few recoveries of these releases have been made.

Chemical Control

The commercial use of insecticides by small-scale farmers to control B. fusca is more exceptional on sorghum than on maize. The high cost of chemical insecticides, difficulty of application (Duerden 1953) and timing, unavailability of pesticides in rural areas, and scarcity of water for sprays, especially in the semi-arid sorghum-producing areas, do not facilitate their use (Nwanze and Mueller 1989).

Currently recommended insecticidal control measures against stem borers have generally been derived from measures initially established for such crops as cotton, tobacco, and groundnut. Several studies on the chemical control of B. fusca have been designed; either to determine the relative efficiencies of different chemicals, or to evaluate B. fusca control under experimental conditions. The following section provides a brief historic account and a review of recent usage.

The earliest use of insecticides for the control of B. fusca was reported from South Africa where maize crops were treated with hycol solution, sheep-dip and several other botanical insecticides such as ‘Derrisol®’, Pulvex®, ‘Kymac®’, etc., that are all based on rotenone, a product of the leguminous plant Derris chinensis (USADA 1922, Chorley 1932, Ripley 1928, Ripley and Hepburn 1928, 1929, Parsons 1929). Good control of B. fusca was achieved by using these chemicals. In the 1950s, DDT at 22.4 kg ha⁻¹ was successfully used in Ghana (Bowden 1956a) and in Uganda (Coaker 1956).

Several later studies indicate that a single dose of carbofuran at 10—25 kg a.i. ha⁻¹, applied to the planting furrows of maize in South Africa and in Nigeria, gave good control (Walters 1975, van Rensburg and Malan 1982, van Rensburg et al. 1978, Egwuatu and Ita 1982, Drinkwater 1979). Placement of granular dusts of endosulfan, carbaryl, malathion, or fenvalerate in leaf whorls were also reported to control B. fusca effectively (Whitney 1970, Adenuga 1977, Adesiyun 1986, Kishore 1989). Spray applications of endrin as a 0.03-0.40% emulsion, or as a 2% dust formulation, were effective in eastern Africa (Walker 1960a).

However, with the changing patterns of maize and sorghum production in many African countries (i.e., on large-scale and parastatal farms) insecticide use will form a vital component in an integrated approach to stem borer control.

Legislative Control

Legislation to control B. fusca on maize was attempted in Kenya in the 1920s and 1930s (Ander-
son 1929, Wilkinson 1939). The objective was to restrict sowing maize to the February—May period, when infestation was expected to be low. There seems to be no information available on the effectiveness of these measures and the last recorded implementation of this legislation was in 1937/38.

Other Methods

Light trapping. This technique has been used against stem borers of rice in Southeast Asia but does not seem to have been used against *B. fusca* in Africa. It does not seem particularly appropriate as it would require easy access to electricity, and the range of most traps would be relatively limited.

Pheromone trapping and mating disruption. Campion and Nesbitt (1983) reviewed progress in the identification and use of pheromones for stem borer monitoring, mass trapping, and mating disruption. They concluded that monitoring might help to define periods of moth flight more clearly; that mass trapping is unlikely to provide satisfactory control; and that mating disruption is most likely to be effective when used on maize and other crops grown under plantation conditions. Hall et al. (1981) reported that a synthetic pheromone mixture caught as many male moths as did the natural pheromone.

Integrated Pest Management

Management options for stem borer control on sorghum in the semi-arid tropics of Africa and Asia have recently been reviewed by Nwanze and Mueller (1989), who emphasized that stem borer control strategies must be politically practical, socially acceptable, economically feasible, and technically effective. They excluded consideration of the more exotic control methods such as the use of pheromones, juvenile hormones, and chemosterilants, and concentrated on other, mainly nonchemical methods. Their overall conclusion was that most recommendations are impractical as they do not take sufficient account of the situations, resources, and needs of farmers. Although there is much information available on the possible methods of control, there is a need to follow a farming systems approach to applied stem borer management research. The most recent attempt to develop such programs has been reported by Saxena et al. (1989) in a joint ICIPE/Kenya Agricultural Research Institute (KARI) pilot project involving 25 farmers at each of two locations, Oyugis and Rusinga, in western Kenya. The combined effects of several components (intercropping, adjustment of sowing date, crop-residue disposal, and host-plant resistance) were tested, and were reported to reduce stem borer damage to sorghum (including damage by *B. fusca*).

Conclusions and Recommendations

During the past 90 years, *B. fusca* has been studied in many different parts of Africa and, as a result, much information is available in published and unpublished records. The extent and nature of that information is shown in this handbook, the first comprehensive compilation on this species since Mally (1920) published his handbook. Much has been added since 1920, and in recent years there has been a marked increase in the number of scientists engaged in research on this pest in Africa. Despite these efforts, *B. fusca* seems to be as damaging a pest today as it was at the beginning of the Century, and there are still many basic questions that remain unanswered. There is therefore a need to focus on critical questions and to avoid the unnecessary repetition of work that has already been done, especially if it is not particularly relevant to effective pest management. Our main conclusion is that there is a need for better coordination of research teams working on this pest and for better targeting of the research effort. Our detailed recommendations are summarized below.

Pest Status and Crop Loss Assessment

There seems little doubt that *B. fusca* is an important pest of maize in many parts of Africa and experiments have shown that substantial yield losses result from moderate infestations. The situation on sorghum is less clear, but there are certainly occasions when yield losses are high. There
is however a real need for more and better critical
determinations of yield losses resulting from dif­
ferent levels and types of attack on both crops.
Objective crop loss assessment is not easy, but
experimental techniques have been developed
and should be more widely used. In addition,
there is a need for more extensive field assess­
ment of B. fusca incidence and importance in
farmers’ fields to determine which areas are most
at risk to attack by this species. The present inten­sity of research work suggests that South Africa,
Nigeria, and Kenya are the three countries most
affected, but that may simply reflect the greater
numbers of entomologists in those countries.

Biology and Ecology

The biology and ecology of this species have been
well studied in a number of African countries but,
although much is known, there is a need for con­
firmatory studies in many areas and additional
work will be needed to obtain answers to a num­
ber of key questions, including:

• how far do adults fly and what factors affect
 adult dispersal?
• what are the main requirements for successful
 mating?
• what factors determine successful oviposition?
• what factors determine the behavior of first-
 instar larvae and affect their successful estab­
 lishment on host plants?

• what are the mortality factors affecting popula­
tion dynamics?
• why are there marked discontinuities in the
 spatial distribution of B. fusca, and why does it
 occur at lower altitudes in West Africa than in
 eastern and southern Africa?
• why are some crops seriously damaged by first-
generation attack in some years but not in
 others?

Pest Management

Integrated pest management (IPM) has been the
favored strategy for pest control for many years
but, apart from recent work by ICIPE in its study
villages in western Kenya, there does not seem to
have been any concerted effort to develop well-
focused IPM strategies for the control of B. fusca
and other cereal stem borers in Africa. The
USAID-funded Sahelian IPM Project work on
B. fusca and other pests of cereals in West Africa,
including work in Burkina Faso, does not seem to
have resulted in the formulation of IPM programs
for sorghum or maize.

Plant breeding, which may well provide the
best control, is handicapped by the lack of effi­
cient screening techniques, due mainly to the in­
ability to break the larval diapause of B. fusca
and to rear it successfully on meridic diets. Infor­
mation on the mechanisms of resistance and its
inheritance is also very limited.
References

Cameron, P. 1906. On the hymenopterous para-
sites of the mealie stalk borer (Sesamia fusca, Hampson). Transactions of the South African Philo-

Campion, D.G., and Nesbitt, B.F. 1983. The util-
ization of sex pheromones for the control of stem-

Chapman, R.F., Woodhead, S., and Bernays, E.A. 1983. Survival and dispersal of young larvae of Chilo partellus (Swinhoe)(Lepidoptera: Pyra-
lidae) in two cultivars of sorghum. Bulletin of Ento-

Chorley, J.K. 1932. Report of the chief entomolo-
gist for the year ended 31st December 1931: agri-

CIE (CAB International Institute of Entomol-

schappen, Rijksuniversiteit Gent 51(3a): 1147-1155.

Drinkwater, T.W. 1979. The application of sys-
temic insecticides to the soil for the control of the maize stalk borer, Busseola fusca (Fuller) (Lep-
idoptera: Noctuidae), and of Cicadulina mbila (Naude)(Hemiptera: Cicadellidae), the vector of maize streak virus. Phytophylactica 11(1):5-11.

Gebrekidan, B. 1985. Breeding sorghum for re-
sistance to insects in eastern Africa. Insect Sci-
ence and its Application 6(3):351—357.

Gilstrap F.E. 1985. Concepts for biological con-
trol of Arthropods attacking sorghum. Pages 403-

Whitney, W.K. 1970. Observations on maize insects at the International Institute of Tropical Ag-

Part 2

An Annotated Bibliography of *Busseola fusca* (Fuller)

1900-1990

Compiled by

S. Prasannalakshmi and M. Suguna Sri
Contents

Introduction

Main Entries
 General 30
 Descriptions (Taxonomy) 34
 Biology, ecology, pest status, and crop loss assessment 34
 Pest management (General) 53
 Cultural control 55
 Plant resistance 60
 Biological control and natural enemies 63
 Chemical control 68
 Legislative control 74
 Other control methods 75
 Integrated pest management 76

Author Index 79
Introduction

This bibliography is issued as Part 2 of *Busseola fusca* (Fuller), the African maize stalk borer: a handbook of information.' It contains 396 references and includes both conventional and nonconventional literature collected from published primary and secondary sources, computer-readable databases, and reference lists in papers. Further, individuals known to have interests in work on *B. fusca* were contacted to obtain relevant papers or references. An attempt has thus been to make the bibliography comprehensive.

References in the bibliography are arranged under broad subject headings, and alphabetically by authors under each heading. Subject headings are as in Part 1. However, some headings have been combined in Part 2 to achieve economy. The compilers have specially prepared annotations to entries wherever the original documents were available. In some cases secondary source annotations or abstracts were edited for the bibliography. A few entries do not have annotations as original documents were not accessible. Annotations have been slanted to cover aspects relevant to *B. fusca*. References are cited in ICRISAT style.

References are repeated under more than one subject heading as appropriate. As a result, the number of entries in the bibliography is 447 although the number of unique references is 396. This is also reflected in the unique references under that author in the bibliography.

The bibliography contains references to literature dealing specifically with *B. fusca*. As a result, some of the references listed in Part 1 may not find a place in the bibliography.

About 60% of the documents listed in the bibliography are held by the ICRISAT Library. The bibliography is also available as an application under the Micro CDS/ISIS database management software for microcomputers developed and distributed by UNESCO, and available free of charge to nonprofit organizations. Interested organizations must apply to the ICRISAT Library to get the *B. fusca* database.

The ICRISAT Library will keep this bibliography updated. However, updates will only be provided on demand, either as hardcopy or on diskettes. The compilers welcome additions to this bibliography.
General

001

Relative importance, distribution, bioecology, severity of damage, and control measures of stem borers including *Busseola fusca* are reviewed. Requirements for integrated control are outlined.

002
Appert, J. 1964. [Caterpillars mining cereals in tropical Africa.] Les chenilles mineuses des cereales en Afrique tropicale. (In Fr. Summary(s) in En, Es.) Agronomie Tropicale 19(1): 60-74. 11 ref.

Infestation of sorghum, maize, sugarcane, and pearl millet by *Busseola fusca* in West Africa is reported. Distinctive characters, distribution, bionomics, severity of damage, and control measures of the pest are discussed.

003

The description, geographical distribution and host plants, biology, and control measures of *Busseola fusca* are given.

004

005

006

Investigations on the life cycle and control of *Calamistis fusca* [*Busseola fusca*] on maize, carried out in the Orange Free State, South Africa during 1931-34 are reported.

007

Infestation, population dynamics, and control measures of *Busseola fusca* (on sorghum and maize) and *Chilo zonellus* are reported. Ploughing in the crop residues and trap cropping were not helpful while burning of windrowed stalks after harvest and weekly dusting with DDT controlled *B. fusca* effectively.

008

009

Distribution, alternative host plants, biology, and control methods of *Busseola sorghicida* Thurai [*Busseola fusca*] are reported.

010

Distribution, severity of damage, alternative host plants, life cycle, natural enemies, seasonal incidence, and control methods of *Busseola fusca* on maize in Uganda are reported.

011

Distribution, life cycle, severity of damage, assessment of yield losses, and control measures of *Busseola fusca* are discussed.

Literature on the biology and control of *Busseola fusca* is reviewed.

Literature (since 1980) on stem borers including *Busseola fusca* is reviewed. Advances in knowledge of biology, ecology, and control of the stem borers including *Busseola fusca* are summarized.

Distribution, severity of damage, life cycle, and control measures of *Busseola fusca* are briefly discussed.

Distribution, pest status, host plants, crop damage, life cycle, and control measures of *Busseola fusca* are discussed. *Busseola fusca* is listed under the pests of both maize and sorghum.

Distribution, pest carry over and light trap studies, and screening for resistance, of stem borers including *Busseola fusca* are discussed.

Descriptions of adults, life cycles, and control measures of stalk borers including *Busseola fusca* and *B. segeta* are given.

Use of sweet maize as a trap crop for *Heliothis obsoleta* [*Helicoverpa armigera*] in southern Rhodesia was questionable since it attracted *Glottula fusca* [*Busseola fusca*].

Identification, host plants, bionomics, population estimation and damage assessment, natural enemies, and control of stem borers including *Busseola fusca* are reviewed. Recommendations for future research on stem borers are outlined.

Maize in Ruand-Urundi [Zaire] was severely infested by *Busseola fusca* in Feb. 1935. The pest could withstand a minimum temperature of 10.7 deg C and a maximum of 28.6 deg C. Biology and control measures of the pest are described.

Progress was made in the investigations of *Sesamia fusca* [*Busseola fusca*].

Available information on *Busseola fusca* is recorded. The pest has 2-3 generations. Natural enemies are not effective. Cultural methods suitable to local conditions are effective against the pest.

024

Distribution, severity of damage, bionomics, and control measures of *Busseola fusca* are reviewed. Future lines of research are outlined.

025

B. fusca is included in the list of insect pests of East Africa.

026

Distribution, biology, ecology, and control of 5 maize borers including *B. fusca* were studied during 1982-83. *B. fusca* was effectively controlled by deltamethrin at 15 g a.i./ha applied 20 and 40 days after plant emergence.

027

028

Infestation of *Busseola fusca* started during 8th week after planting at Mbita Point, Kenya, and during 5th week in farmers' fields. Several parasites and predators were recorded on stem borers including *B. fusca*. Sorghum lines resistant to stem borers were identified.

029

Literature on the distribution, biology, ecology, yield losses, and control measures of stem borers including *B. fusca* is reviewed.

030

Distribution, crop losses, and control measures of sorghum pests (including *B. fusca*) in eastern Africa are reviewed. *B. fusca* is reported from Burundi, Ethiopia, Kenya, Rwanda, Sudan, Tanzania, and Uganda.

031

Distribution, description, life cycle, severity of damage, and control of *B. fusca* are discussed.

032
Sithole, S.Z. 1989. Maize insect pests in Zimbabwe. (Summary(s) in Es, Fr.) Page(s) 286-288 in Toward insect resistant maize for the third world: proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects, 9-14 Mar 1987, Mexico. Mexico: Centro Internacional de Mejoramiento de Maiz y Trigo. 5 ref. [Es summary: p. 313; Fr summary: pp. 326-327].

Distribution, severity of damage, and control measures of maize insect pests including *Busseola fusca*, are discussed. Chemical control was achieved by using endosulfan 1 per cent dust or trichlorfon 2.5 per cent G. Carbofuran 10 per cent G at planting time and carbaryl 85 w.p. were also used by commercial farmers. Development and
utilization of maize genotypes resistant to stem borers is suggested.

033

Literature on the distribution, biology, and control measures of *Busseola fusca* is reviewed.

034

035

036

Notes are provided on the identification, host plants, severity of damage, biology, and control of *Busseola fusca* in Zimbabwe.

037

Distribution, host plants, damage symptoms, economic importance, morphology, life cycle and ecology, natural enemies, and control measures of *Busseola fusca* are briefly discussed.

038
van Eijnatten, C.L.M. 1965. Towards the improvement of maize in Nigeria. (Summary(s) in Nl.) Mededelingen van de Landbouwhoogeschool te Wageningen 65(pt.3): 120 pp.

Bionomics, severity of damage, and control of *Busseola fusca* are given.

039

The life cycle and seasonal incidence of *Busseola fusca* in South Africa are outlined. It attacks both maize and sorghum and causes an annual crop loss of 10 per cent. Methods for its control are described.

040

Research on various aspects (survey and systemic, bionomics and life cycle, laboratory work with insecticides, field trials, sampling, infestation, and yield) of stem borers including *Busseola fusca* is reviewed.

041

Literature on life cycle, nature of damage, and control measures of *Busseola fusca* are reviewed. Attack of 1st generation pest was favored by rainfall over 10 mm in Jan.-Feb. and 2nd generation later by heavy rains. Granules containing endosulfan and tetrachlorvinphos were effective in controlling the pest.

042

A new species of *Busseola* was observed on *Pennisetum purpureum* in southern Rhodesia. Moths of this species were darker and winter diapause was easily terminated by higher temperature and humidity. Life cycle and control measures of *B. fusca* are described.

043

Studies were conducted on the biology, life cycle, and seasonal fluctuation of *Busseola fusca*, and the severity of damage and crop losses in Burkina Faso. Yield losses as high as 42.88 per cent were
reported. Cultural practices such as destruction of crop residue or its incorporation in the soil, and natural enemies are suggested for the control of the pest.

Descriptions (Taxonomy)

044

Adults of 3 new genera and 6 new species are described. Busseola quadrata and B. segeta resemble a rufous-ochraceous form of B. fusca, and B. phaia the infuscate form.

045

Taxonomic description of Sesamia fusca [Busseola fusca] and the distinguishing characteristics from three other members of the genus Sesamia are given.

046

Six genera and 29 species were revised and a new genus Speia is erected for Phalaena vuteria Stoll. Busseola was also included in the revision.

047

048

Busseola fusca is one of the 8 stem borers described. The common name, host plants, world distribution, and the characteristics distinguishing male from female pupae, for each species, are given. Simple keys based on the morphological features, and on chaetotaxy in the case of larvae, are provided for identification of the borers.

049

Key features for identifying Busseola fusca, Sesamia calamistis, and Chilo partellus based on egg, larval and adult morphology, distribution in South Africa, and host range are tabulated.

Biology, Ecology, Pest Status, and Crop Loss Assessment

050

Busseola fusca was not found in the Transvaal during Jan. 1926.

051

Busseola fusca was highly destructive in Natal, South Africa. No grain could be produced from sorghum grown near native-grown maize and sorghum, though in other locations good crops were harvested.

052

Busseola fusca larvae were observed on sorghum stems.

053

Busseola fusca damage to maize in the Trans Nzoia and Vasin Gishu districts of Kenya is reported.

054

Busseola fusca infestation on maize in Somalia is reported.

055
Larvae and pupae of *Busseola fusca* were found in the main stalk of millet in Zanzibar.

056

In 1978, early onset of rains resulted in a shortening of the unfavorable dry season. Pest mortality was therefore reduced. Coupled with early sowing of maize and sorghum, and synchronization with peak oviposition of *Busseola fusca*, a severe outbreak was recorded.

057

Larval diapause in *Busseola fusca* was influenced by the cumulative effects of time and one or all the factors tested. Low relative humidity, darkness, and absence of food retarded diapause development. The time required for diapause development and pupation decreased as the dry season progressed.

058

Larval and pupal mortality of *Busseola fusca* was higher on millet (85 per cent and 26.7 per cent, resp.) than on sorghum (39 per cent and 6.5 per cent, resp.). *B. fusca* fed on millet was smaller, weighed less, laid fewer eggs, and had longer pre-oviposition periods.

059

Busseola fusca emerged from maize stubble during studies at Moor Plantation, Ibadan, Nigeria in 1964-68. Stubble left after the early-season harvest had an average of 27 borers/100 stalks and that of the late-season harvest 15/100 stalks.

060

All entries in the millet pathology trials at Nigeria showed 100 per cent borer (*Sesamia calamistis* and *Busseola fusca*) infestation.

061

Allan, W. 1930. Insect pests and plant diseases of economic importance during the year [1929]. Report, Department of Agriculture, Northern Rhodesia 1929: 36-44.

Maize in northern Rhodesia was attacked by *Busseola fusca*.

062

Young maize was severely damaged by *Busseola fusca* in northern Rhodesia. The pest did not attack farms on which crop residues were regularly destroyed.

063

Busseola fusca is widely distributed and constantly present in Kenya because of the continuous presence of volunteer maize.

064

Busseola fusca infestation on maize stalks increased up to 60 per cent during the year 1931 in Kenya (according to H. Wilkinson's report).

065

Busseola fusca was one of the common pests on maize in Cameroon.

066

Busseola fusca caused severe losses by boring into maize and millet stems.

Biology of *Busseola fusca*, and methods of maintaining a regular supply of 1st instar larvae, artificial infestation, damage evaluation, development and utilization of resistance involving population and inbred development, and measuring the effectiveness of resistance are described. Three resistance factors (the 1st that kills the early instar larvae, the 2nd that repels larvae, and, the 3rd that retards larval development) and their role in integrated pest management are described.

Busseola fusca on maize was monitored by the use of pheromones in Zimbabwe.

The occurrence, biology, and severity of damage of *Busseola fusca* on maize in Africa are reviewed with special reference to Rhodesia. The possibility of using a sex pheromone for the control of the pest is discussed.

A sex pheromone in virgin females of *Busseola fusca* was identified as an unsaturated acetate ester. Morphology and histology of the sex pheromone gland are described.

Bonzi, S.M. 1982. *Chilo diffusilineus* J. de Jongnis (Lepidoptera Pyralidae), a cereal stem borer in irrigated and rainfed crops in Upper Volta [Burkina Faso]. *Chilo diffusilineus* J. de Jongnis (Lepidoptera Pyralidae) borer des tiges de cereales irriguees et pluviales en Haute-Volta. (In Fr. Summary(s) in En, Es.) Agronomie Tropicale 37(2): 207-209. 5 ref.

Busseola fusca caused 96.3 per cent infestation on sorghum, 6.9 per cent on maize, and 2.1 per cent on pearl millet.

Busseola fusca was one of the most common insect pests on sorghum in Upper Volta [Burkina Faso].

Severity of damage and biology of *Busseola fusca* are briefly discussed.

Borers at 6 locations in southern Nigeria were studied during the second planting season (Aug.-Nov.). *Busseola fusca* was found at Idaho and Alabama, and constituted a small proportion (2 to 29 per cent) of the population.

Busseola fusca appeared in very low numbers on maize at Nairobi, Kenya showing peaks of less than 0.17 larvae and pupae per plant.

076
The co-evolution of tropical stem borers (including *Busseola fusca*) with their graminaceous hosts is traced. Crop damage and response are linked to the adaptation of the host plants.

077
Busseola fusca was reported as one of the stem borers of sorghum in West Africa.

078
Incidence of *Busseola fusca* on pearl millet in Malawi is reported.

079
Maize planted in Salisbury, Southern Rhodesia, in January 1945 was severely damaged by *Busseola fusca*.

080
World distribution of *Busseola fusca*, together with supporting references is given. The map shows Angola, Benin, Burkina Faso, Burundi, Cameroon, Chad, Ethiopia, Gabon, Ghana, Guinea, Cote d'Ivoire, Kenya, Lesotho, Malawi, Mozambique, Nigeria, Rwanda, Sierra Leone, Somalia, South Africa, Sudan, Tanzania, Togo, Uganda, Zaire, Zambia, and Zimbabwe as the countries affected by *B. fusca*.

081
Busseola fusca is recorded in the high rainfall, lowland area of Cameroon.

082
Busseola fusca was observed on sorghum in Massignola, Sotuba, and Kogoni regions of Mali.

083
Severity of damage of stalk borers is described. Screening trials for *Chilo* sp. and *Busseola* sp. resistance, are mentioned.

084
Severe infestation of sorghum by *Busseola fusca* occurred during 1947-49 in the experimental farm at Kongwa and affected large-scale planting
which was only possible in 1949-50 when infestation was less severe.

085

Life cycle and distribution of Sesamia fusca [Busseola fusca] are given.

086

Busseola fusca was one of the 3 stem borers recorded. The pest was dominant at higher altitudes (1160 to 2500 m) and cooler areas. Of 6 parasitoids recorded, Apanteles sesamiae was the most widespread. Diaperasticus erythrocephala was noticed for the first time preying upon B. fusca larva at Welega, Ethiopia.

087

Pennisetum purpureum and Sorghum verticilliflorum (thick stemmed), and Saccharum officinarum and Sorghum verticilliflorum (thin stemmed) were identified as the major and minor alternative hosts for Busseola fusca, respectively.

088

Distribution, biology, sources of infestation, and cultural control of Busseola fusca were studied. The impact of wild and cultivated host plants, treatment of crop residues, and planting dates were assessed in the context of non-pesticide management techniques.

089

Three generations of Busseola fusca per year were observed on maize. Pupation of diapause larvae was observed in Apr. Fecundity and longevity of the 1st generation female moths from non-diapause larvae were more than those from diapause generation. Peak oviposition period was between the 2nd and 5th nights after moth emergence.

090

Busseola fusca pupated from 17-26 Apr. in the field. A cumulative rainfall of about 80 mm or above from Mar. was necessary to induce pupation.

091

Busseola fusca was one of the three borers observed. The pest was dominant at higher altitudes (1160-2500 m) and in cooler areas. Diapausing larvae were found in residues of different lengths, but longer stalks contained more larvae. Placing infested maize horizontally for 4 weeks or sorghum stalks for 2 weeks was effective in reducing B. fusca larvae. Early planting of maize in Apr. is suggested to increase yields without using insecticides against the pest.

092

Field populations of 4 stem borers including Busseola fusca were studied during 1971-72. Although the four species attacked the same host plants (maize, sorghum, and sugarcane), they occupied different ecological niches. Eldana saccharina was predominant on mature plants while B. fusca preferred 3-month-old plants.

093
Busseola fusca was found in the stalks of maize in Sierra Leone.

Incidence of Busseola fusca on maize was reported for the first time in Uganda in 1922.

Infestation of Busseola fusca on maize in Uganda is reported.

Busseola fusca caused considerable damage to maize in Uganda.

The egg, larval, pupal, and preoviposition periods of Busseola fusca on maize lasted 10, 68-74, 14-16, and 3-5 days, respectively. A maximum of 249 eggs were laid in 5 days. Infestation was scarce on the Oct.-Dec. crop in Uganda.

Busseola fusca was one of the second most abundant of 4 spp. of stem borers recorded in northern Nigeria on sorghum, maize, and rice. Busseola fusca was predominant in Zaria and Kano. There was a significant positive correlation between the number of stems bored and the yield.

Busseola fusca larvae survived the 5-6 rainless months in diapause in crop residues. Larval mortality was low between Jan. and Mar. Date and location of sampling did not influence larval populations significantly.

Literature on the distribution, biology, and ecology of Busseola fusca is reviewed.

Busseola fusca infestation on maize and sorghum in Tanganyika territory is reported.

Isolation and characterization of the protein associated with diapause in Busseola fusca larvae is reported.

Busseola fusca was the least attracted among the 5 species of stem borers tested in the pheromone and light trap studies in sorghum and maize fields in western Kenya during 1981-82.

The map shows Angola, Benin, Cameroon, Ethiopia, Ghana, Cote d'Ivoire, Kenya, Lesotho, Malawi, Nigeria, Rwanda, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zaire, Zambia, and Zimbabwe as the countries affected by Busseola fusca.
Research on the severity of damage and control of Busseola fusca on sorghum in Nigeria is reviewed.

A brief report of rearing Busseola fusca on artificial diet is given. Duration of larval development using artificial diet and stems is compared.

Distribution, alternative host plants, parasites, and predators of stem borers including Busseola fusca are discussed. List of sorghum lines resistant to both Chilo partellus and B. fusca is given.

In Nigeria, damage by Busseola fusca on sorghum was estimated by visual rating system. The rating in the upper half of the stalk provided the highest correlation. Time of infestation and grain weight per head were highly correlated. Boot formation and flowering were critical periods. Yield reductions were lower with late infestations.

Busseola fusca is reported as one of the most common stem borers attacking cereals and sugarcane in Uganda.

In Cameroon, Busseola fusca accounted for 98.1, 0, and 24 per cent of the maize borers at Yaounde, Bertoua, and Ekona, resp., during the first season, and 69, 23.4, and 41.3 per cent resp., during the second season. B. fusca infestation at vegetative, flowering, and post flowering stages was 58.4, 26.5, and 15.1 per cent respectively.

Methods involving measurement of infestation levels and estimation of yield losses are presented for assessing the damage caused by Busseola fusca on maize.

In Somalia, Busseola fusca infestation ranged from 20-60 per cent in Nov. 1965. Infestation was more in the lower Juba than in the Chebelli Valley.

Life cycle and cultural control of Calamistes fusca [Busseola fusca] are discussed. Second brood larvae that bored into the stalks of maize and kaffir corn [sorghum] hibernated as far down as the roots.

Approximately 85 per cent of Busseola fusca larvae on maize in southern Rhodesia hibernated in the stalks above the ground level. Maize planted early was not helpful as a trap crop because of delayed rains and germination.

Busseola fusca damaged maize severely during Apr. and May. Early sown maize was badly attacked in Dec. in some areas in southern Rhodesia.

Busseola fusca was reared to maturity on rice in Sierra Leone [as quoted in Grist and Lever 1969, p. 124].

Research on the ecology and control of Busseola fusca is reported along with other pests of maize in Kenya.

Peak populations of Busseola fusca on maize occurred from Jun. to Oct. Full-grown larvae entered diapause from Nov.-Dec. to Apr.-May and adults emerged after 5-6 months. Parthenogenesis was observed for the first time.

Sorghum diets of Busseola fusca produced high mortality, unbalanced sex ratio, and sterility. Adaptation to different diets resulted in genetic differences.

Busseola fusca infested more than 90 per cent of sorghum (cultivar SSK-52) in the dry season of 1986 (Apr.-Oct.) at Delmas and Brits, Transvaal, South Africa. About 82 per cent of B. fusca hibernated as 6th instar larvae and 16 per cent as 5th instar larvae. Pupal period lasted for 3 weeks during Oct.-Nov. Some parasites (Apanteles sesamiae, Chelonus curvimaculatus, Chelonus sp., Pristomerus sp., Bracon sp., and Iphiaulax sp.) and predators (Pheidole megacephala and Dorylus helvolus) are reported.

More than 90 per cent of sorghum plants were infested by Busseola fusca and Chilo partellus in the Transvaal. Infestation dropped gradually as winter progressed. Parasitism was higher on B. fusca when compared to that of C. partellus. Some parasites and predators are reported.

Busseola fusca infested maize in Nigeria.

Incidence of Busseola fusca on sorghum at research stations in Makoka, Malawi; Gairo, Tanzania; and Matopos, Henderson, Panmure, and Aisleby, Zimbabwe is reported.

Infestation of finger millet by *Busseola fusca* at Matopos, Zimbabwe and use of thiodan for its control are reported.

Maize crop planted late in Aug. 1965 at Ife in western Nigeria was severely infested by *B. fusca* 9 weeks after sowing.

Busseola fusca infested South African broom corn [sorghum] more heavily than those imported from South America and Europe.

Busseola fusca infestation, percentage of inter-nodes bored, stem tunnelling, number of borers per plant, varieties showing high and low borer infestations, grain weight per head and 1000 grain weight, in various trials in Nigeria are reported.

High correlation was observed between time of infestation by *B. fusca* and sorghum grain yield. Boot formation and flowering were the most critical periods. There was no relationship between time of infestation and stem borer damage, and extent of damage and grain yield. A method of visual estimation of stem borer damage is described.

130 **MacFarlane, J.H. 1990.** Damage assessment and yield losses in sorghum due to the stem borer *Busseola fusca* (Fuller) (Lepidoptera: Noctuidae) in northern Nigeria. Tropical Pest Management 36(2): 131-137. 22 ref.

Relationship between different methods of assessing damage by *B. fusca* and grain weight per head in various sorghum cultivars is discussed. Visual damage rating system and nodes bored gave the best relationship. Sorghum infested before boot formation suffered greater yield losses.

Yield loss caused by *B. fusca* larvae was more during early growth stages than at later stages at Njoro, Kenya. Per cent grain yield loss was proportional to the number of borer larvae. Crop residue disposal practices - cut stumps, partial burning, deep ploughing, and harrowing reduced 64, 65, 67, and 89 per cent of live larvae, and 14, 17, 91, and 97 per cent of pupae, respectively.

Busseola fusca infestation on maize in South Africa resulted in a loss of 540,000 sterling pounds in 1919.

Available information on *B. fusca* is recorded. The pest has 2-3 generations. Natural enemies are not effective. Cultural methods suitable to local conditions are effective against the pest.

134 **Masina, G.T. 1990.** Cereal insect pests in Swaziland. Page(s) 245-252 in Cereals of the semi-arid tropics: proceedings of a Regional Seminar, 12-16
Busseola fusca was the second most important stem borer accounting for 19 per cent infestation in Swaziland. It was present in all the regions except the Lowveld.

Absence of Busseola fusca was marked in Nyasaland in 1916.

Larval incidence and population density of Busseola fusca and Chilo partellus in 2 sorghum varieties (Serena and ZSV1) planted at 4 planting dates (D1, D2, D3, and D4) at 14 day intervals starting from 9th Dec, were assessed during 1987-88 in Malawi. B. fusca infestation was higher on Serena in D1 and D4, and on ZSV1 in D2 and D3. B. fusca was less abundant than C. partellus.

Movement of Busseola fusca larvae into the base of the sorghum head resulted in undersized heads and 15 per cent grain loss.

Ecology and control of cereal stem borers including Busseola fusca in Zimbabwe are reviewed. Migration is an important parameter in the proliferation of the pest.

Life cycle of Sesamia fusca [Busseola fusca] is described. Trap cropping and winter ploughing are suggested for controlling the pest. However, trap cropping is not suitable for the cooler parts of South Africa where maize is planted early to avoid frosts.

Busseola sorghicida, Thurau [Busseola fusca] was identified as a pest of sorghum in East Africa.

Chaetotaxy of cob and stem borers of maize including Busseola fusca is studied. Characters for distinction between species are given.

The three isomeric components, (Z)-ll-, (E)-ll-, and (Z)-9-tetradecenyl acetates produced by Busseola fusca were synthesized and tested in traps for field attractancy. The components in their natural ratio (10:2:2) were highly attractive to male.
B. fusca. Individual compounds and binary mixtures were not attractive.

The components of a pheromone released by Busseola fusca females are identified as (Z)-ll-, and (E)-ll-tetradecenyl acetates.

Juvenile hormone titre was low in non-diapausing larvae but higher during diapause in Busseola fusca. Moulting hormone titres in diapausing larvae were generally lower.

Busseola fusca was observed in Upper Volta [Burkina Faso] in the region below latitude 11 deg 30’N, where the annual rainfall exceeds 900 mm, restricting the pest to the southern region. It was not found in Kamboinse. In northern Nigeria, the pest was observed at Kano and Dutsin-Ma. At Samaru, Nigeria, B. fusca accounted for 98 per cent of the borer larvae on sorghum. At Farako-Ba, Upper Volta, it accounted for 38.9 per cent, and did not show any distinct generations.

Severe infestations of Busseola fusca occurred in Nigeria as far north as 12 deg 6’ latitude, being most severe at Samaru and Funtua. In Burkina Faso, B. fusca infestations occurred below latitude 11 deg 30’N where annual rainfall exceeded 900 mm. The late crop was most severely infested.

Incidence, severity of damage, distribution, and seasonal abundance of the major insect pests of sorghum including Busseola fusca are discussed. B. fusca accounted for 98 per cent of borer larvae in Samaru, Nigeria and less than 40 per cent at Farako-Ba (Bobo-Dioulasso), Burkina Faso. Only two generations of the pest were observed at Farako-Ba.

Busseola fusca was predominant in the south of latitude 12 deg N.

Busseola fusca was observed on maize and sorghum in Upper Volta [Burkina Faso] in the region below latitude 11 deg 30’N, with an annual rainfall greater than 900 mm. It was also found in Kano and Dutsin-Ma, northern Nigeria. In the Sahel, population of B. fusca was lesser than that of Acigona ignefusalis [Coniesta ignefusalis]. Sorghum leaves were severely damaged by B. fusca in northern Nigeria in 1980. Various cultural measures, use of resistant varieties, and release of biological agents, are reviewed in the context of integrated pest management.
150

Adult populations of *Busseola fusca* and *Chilo partellus* were monitored by trapping, using synthetic pheromone or 1-day-old virgin females, on maize at 5 sites in Kenya, during the 1989 short rains. Weekly moth catches varied significantly between sites. Infestation was very low between 2-10 WAE. No relationships could be established between trap catches, percentage plant damage, and leaf damage ratings.

151

Biology and control measures of insect pests including *Busseola fusca* in Kenya, Uganda, and Tanganyika on maize and sorghum; *B. phaia phaia* in northern Rhodesia and Tanganyika on *Pennisetum purpureum* and *B. p. segeta* in Uganda and Tanganyika on *P purpureum* and *Panicum maximum* are reported. *B. sorghicida* Thurau is a synonym of *B. fusca*.

152

Infestation levels and distribution of stem borers including *Busseola fusca* are given.

153

Composition of a diet (B2) for *Busseola fusca* is given. Development of the borer on diet B2 was good but the 4th generation was infertile.

154

In Nigeria, late crop of maize was heavily infested by stem borers including *Busseola fusca* in 1978 at Amakama, resulting in 84.4 per cent plant stand depletion. Association between plant density and stem borer feeding damage was not significant. More larvae were observed in maize plots with plant spacings of 100 x 15 and 100 x 10 cm than in other treatments. At Ibadan, *B. fusca* was predominant and plant density was negatively correlated with stand loss. At both places borer population was highest on 3-week-old plants.

155
Ogwaro, K. 1982. Intensity levels of stem borers in maize and sorghum and the effect on yield under different intercropping patterns. Insect Science and its Application 4(1-2): 33-37.13 ref.

A single *Busseola fusca* larva could reduce the yield of the stems by 28 per cent of mean dry cob weight. Maize was infested more during the vegetative stages and sorghum towards maturity. Infestation was more in pure stands of sorghum.

156

Diapausing larvae of *Busseola fusca* collected from the field during the short rainy season pupated following artificial wetting in the laboratory. Conditions of continuous moisture during the long rainy season play a significant role in the termination of diapause.

157

Early phase of diapause in *Busseola fusca* was not sensitive to any of the factors tested, but late diapause larvae pupated after artificial wetting. Continuous exposure to water for 7-9 days was required for highest level of pupation. Pupation was also accelerated by chilling late diapause larvae at -10 deg C for 5 minutes.

158
Okuda, T. 1989. Aggressive characteristics of diapausing larvae of a stem borer, *Busseola fusca* Fuller (Lepidoptera, Noctuidae) in artificially

159

Neither feeding the larvae of *Busseola fusca* on fresh sorghum stems nor allowing them to drink water stimulated a break in the larval diapause. Diapause larvae transferred to artificial wet conditions pupated without increase in fresh weight. Water contact was more significant than water uptake in terminating larval diapause.

160

Five successive insectary generations of *Busseola fusca* were successfully reared on an artificial diet. Larval diapause was minimum.

161

Busseola diapause protein (BDP) was purified from the haemolymph of diapausing larvae of *Busseola fusca*, by a combination of density gradient ultra-centrifugation, gel permeation, and affinity chromatography. Composition of this protein is given.

162

Identification and purification of diapause protein in *Busseola fusca* (BDP); physical, chemical, and immunological properties of BDP, and its *de novo* synthesis in the fat body tissue of diapausing insects are described.

163

Infestation of *Calamistis fusca* [*Busseola fusca*] on maize is reported.

164

A protein was isolated from diapausing larvae of *Busseola fusca*. It was an excellent marker for predicting diapause induced by JH or semiochemicals in ageing stems of the host plant.

165

As part of plant protection research activities in Zimbabwe, an investigation showed that the sex pheromone of *Busseola fusca* is identified as Cis-9-tetradecenyl acetate.

166

Busseola fusca larvae were observed in sorghum stems in Shinyanga, Tanzania.

167

Distribution of stem borers of sorghum and maize in Kenya is reported. *Busseola fusca* was dominant at Kissi with 61 per cent infestation. Sources of sorghum resistance to *B. fusca* were identified. Carbofuran (1 kg a.i./ha) was very effective in controlling the pest when evaluated 11 weeks after planting.

168

A peak density of *Busseola fusca* (21.6 larvae per 10 plants) was observed at 7 WAE on sorghum at Ungoye, Kenya. The density declined to 10.6 larvae/pupae per 10 plants at the time of harvest. On maize, infestation started at 6 WAE and reached a peak (1.4 larvae/pupae per 10 plants) at 11 WAE.
At harvest the borer population was negligible and only 4 per cent of the plants were damaged.

169

Methods of assessing and quantifying on-farm yield losses caused by sorghum pests including *Busseola fusca* are discussed.

170

Incidence of stem borers in sorghum and maize at Mbita Point Field Station (MPFS) and Ungoye in Kenya is reported. At MPFS, incidence of *Busseola fusca* on sorghum and maize was 1.2 and 0.25 larvae/pupae per 10 plants, resp., and at Ungoye, the incidence was 4.0 and 0.93, respectively.

171

In Kenya, *Busseola fusca* was observed on *Hyparrhenia rufa*, *Pennisetum macrourum*, *P. mauritianus*, *Sorghum arundinaceum*, and *S. verticilliflorum*, at Mbita Point and nearby fields.

172

At Mbita Point Field Station, Nairobi, Kenya, infestation of *Busseola fusca* was up to 95 per cent and started at 5 weeks after emergence (WAE). At Rusinga Island, infestation was 79-100 per cent and started at 6 WAE. Number of larvae per stem at Rusinga Island ranged from 2.4 to 5.7.

173

Busseola fusca infestation on maize in Tanganyika territory is reported.

174

Late planted maize was severely attacked by *Busseola fusca* in Tanganyika.

175

176

Cereals in central and eastern Ethiopia were attacked by *Busseola fusca*.

177

Relative abundance of *Busseola fusca* in high, middle and lowveld was 78.67, 17.32, and 21.12 per cent, resp. during 1986/87, and 79.8, 5.32, and 15.61 per cent, resp. during 1987/88. *B. fusca* favored high elevations, high rainfall, and high relative humidity.

178
Arid Tropics) Sorghum and Millet Improvement Program. 4 ref.

Busseola fusca was observed in Zimbabwe, Botswana, Lesotho, and Swaziland in the 1985-86 cropping season. Stem borers caused 20 per cent damage by late Mar. 1986. Distribution of pest species was influenced by environmental factors such as temperature, humidity, and altitude.

179

Stem borers (including _Busseola fusca_) were the most serious pests of sorghum in the communal areas of Zimbabwe during Jan. - Mar. 1985.

180

Busseola fusca was found on maize and millet stalks in Nyasaland.

181

Busseola fusca was injurious at altitudes above 4000 ft. in Nyasaland.

182

Overwintering larvae of _Busseola fusca_ on maize collected in southern Rhodesia during Aug. 1958, were given various water treatments. Pupation began after 10-20 days, but proceeded much faster in stems that had been initially water-soaked than in dry stems or in stems dipped once in water.

183

Life history, seasonal cycle, and feeding habits of _Busseola fusca_ are discussed. The pest had two generations in the year, and a majority of 2nd generation larvae entered diapause. Diapause was induced by larval feeding on drying food.

184

Life cycle, larval diapause, and control of _Busseola fusca_ are discussed. The pest had two generations on the main crops of sorghum and maize and a 3rd on sorghum tillers. Diapause was terminated by contact with water. Cob yield increased when treated with DDT.

185

In studies in Ethiopia during 1977-78, maize at 10-12 leaf stage was manually infested with 1-5 first instar larvae of _Busseola fusca_ (collected from sorghum) per plant. Plant height was reduced 2-3 times when infested with 4-5 larvae. One larva per plant increased the number of plants with broken panicles by 8.6 per cent. Increasing larval infestation per plant caused 6.6 g (15.2 per cent) loss of grain yield.

186

Unnithan, G.C. 1985. Development and reproductive biology of the maize stem-borer _Busseola fusca_ (Lepid., Noctuidae). (Summary(s) in 48
The mean duration of postembryonic development was 40.8 days. Facultative diapause in *Busseola fusca* can be prevented if the larvae are fed on young sorghum plants. Male and female lifespan averaged 8.7 and 6.9 days, respectively. The overall mean fecundity and egg fertility were 723 eggs/female and 84 per cent, respectively. The maximum number of eggs laid by a single female was 1790.

188

Male-female communication in *Busseola fusca* was disrupted in fields permeated with synthetic pheromone at Rusinga Island and Mbita, Kenya.

189

Delayed mating prolonged longevity and pre-oviposition period but reduced oviposition period, fecundity and egg fertility. Highest fecundity (822 eggs) and egg fertility (94 per cent) were obtained when the females were mated on the night of eclosion. *Busseola fusca* males showed multiple mating ability indicating the inefficiency of mass trapping of males in suppressing pest population. Delayed mating achieved by permeating the field with synthetic pheromone may result in the production of less viable eggs and can be used as a control strategy.

190

Busseola fusca was the predominant stem borer on sorghum. *Chilo partellus* occurred only in small numbers. *B. fusca* survived the off-season (Jul./Aug.-Feb./Mar.) as diapausing larvae in crop residues and *C. partellus* as active population. Infestation of newly planted crop was attributed to diapausing population of *B. fusca*. Stubble destruction is recommended for its control.

191

Busseola fusca virgin females were more than 2 times as efficient as synthetic pheromone in attracting males. Mated females and blank water traps did not attract any males.

192

Traps with a single virgin female of *Busseola fusca* attracted more males than those with 1 and 5 mg synthetic pheromone for the first 10 days, while the catches were similar for the subsequent 15 days. A dosage of 5 mg was more effective than 1 or 2 mg of synthetic pheromone. Male populations of *B. fusca* showed a major peak at about 12 weeks after crop emergence and a minor peak 7-8 weeks later.

193

Damage due to *Sesamia fusca* [*Busseola fusca*] on maize in South Africa is reported.

194

Severity of *Busseola fusca* infestation during Dec. in South Africa is reported.

195

Relative abundance ratio of *Busseola fusca* to *Sesamia calamistis* and other stem borers was 7:1:1.

Adults of *Busseola fusca* reared on maize from non-diapausing larvae in Nigeria laid more eggs than those reared from diapausing larvae. The mortality of diapausing larvae in maize stems that had been cut and left lying on the ground was about 8 times as great as that of larvae in standing stems.

When maize plants (18-24 inches tall) were artificially infested with 1-5 newly hatched *Busseola fusca* larvae in Ibadan, Nigeria in 1964, the rate of plant growth decreased and the number of deadhearts increased; 1-2 larvae per plant reduced the yield by 25 per cent.

Laboratory trials in Nigeria in Aug. 1964 and Jul. 1965, showed that diapause in *Busseola fusca* is genetically controlled and that the influence of food and water is less marked.

Incubation period for *Busseola fusca* eggs decreased with increasing temperature. Larvae developed well at room temperatures between 81.4 and 85 deg F, and went into a quiescent period at 73.6 deg F with apparently no sizeable development. A temperature of 90 deg F was lethal to *B. fusca* larvae.

Usua, E.J. 1969. Description of the larvae of *Sesamia penniseti* Bowden and *S. botanephaga* Tarns and Bowden (Lepidoptera: Noctuidae). Bulletin of the Entomological Society of Nigeria 2(1): 72-76. 7 ref.

Maize and sugarcane were infested by *Busseola fusca* in Nigeria.

Studies conducted in Nigeria in 1965-66 showed that *Busseola fusca* larvae entered diapause in both fresh and dry maize but were pigmented only in fresh stems. During diapause, feeding was reduced by 82 per cent. Presence of water in the field favored adult emergence.

Emergence of *Busseola fusca* adults was influenced by the onset of darkness and not by temperature or relative humidity. The average number of eggs laid per female was 445. Fecundity was reduced by 50 per cent in unmated females.

Diapause in *Busseola fusca* was induced by feeding on mature maize stems with low water, low protein, and high carbohydrate contents. Temperature and photoperiod did not influence diapause.

Respiration rate, thermal death point, weight loss, and life span of diapause and non-diapause...
larvae of *Busseola fusca* were compared. Efficient water conservation enabled diapause larvae to survive adverse conditions.

206 Usua, E.J. (In press.) Distribution of stemborers of maize in the eastern states of Nigeria. Nigerian Journal of Pure and Applied Sciences ?: ?: 8 ref. *Busseola fusca* was restricted to the drier derived savanna zone forest in the northern border of eastern states. Of 52 borers collected in the mangrove forest, 135 in fresh-water forest, 402 in rain forest and 343 in derived savanna, 53.8, 46.6, 52.4, and 45.4 per cent, resp. were *Sesamia calamistis* and only 0, 0, 16.6, and 40.2 per cent, resp., were *B. fusca*.

207 van den Merwe, C.P. 1937. Insects attacking sugarcane. Science Bulletin, Department of Agriculture, Union of South Africa 171: 8 pp. 7 ref. *Busseola fusca* infested sugarcane occasionally. The damage was not serious as the mature plants were hard to penetrate.

Yields were significantly reduced when maize plants were infested by *Busseola fusca* during the post-tasselling period, in South Africa. The number of larvae per plant was a weak estimator of expected yield losses.

211 van Rensburg, J.B.J., and Pringle, K.L. 1989. A sequential sampling technique for surveys of eggs laid by the maize stalk borer, *Busseola fusca* (Fuller) (Lepidoptera: Noctuidae). Journal of the Entomological Society of Southern Africa 52(2): 223-228.11 ref. Oviposition by *Busseola fusca* in sampling units of 20 adjoining maize plants per plant row was determined over the key period of 3-6 weeks after crop emergence. A clumped spatial pattern of oviposition was indicated by a significant fit of the negative binomial distribution to the data (exponent k=1,6632). A sequential sampling technique that reduces the time and effort spent to conduct egg surveys was developed.

The relationship between the seasonal abundance of *Busseola fusca* and rainfall is indirect and survival of moths is determined by the direct influence of humidity. It is implied that infestations will be more serious during years with favorable rains.

Seasonal abundance of *Busseola fusca* moths was monitored by Robinson light traps. Climatic factors influenced the time and magnitude of the three seasonal moth flights. Time of planting determined the severity and time of occurrence of larval infestations.

214 van Rensburg, J.B.J., Walters, M.C., and Giliomee, J.H. 1987. Ecology of the maize stalk borer, *Busseola fusca* (Fuller) (Lepidoptera: Noct-
Studies in South Africa showed that planting date influenced *Busseola fusca* populations. The pest preferred 3-to 5-week-old plants for oviposition. With the emergence of tassel, larvae migrated to adjacent plants. Number of damaged plants increased without any increase in larval population.

Maize plants were artificially infested with egg batches of *Busseola fusca* at different times after crop emergence. Regression equations of yield loss on percentage plants with eggs varied over different seasons, which was attributed to hybrid differences and variation in climate. Yield losses were negatively dependent on the time of infestation, since losses were less pronounced with oviposition occurring after 5-6 weeks after crop emergence. Ear damage was most severe with oviposition 5-7 weeks after crop emergence.

216 van Rensburg, J.B.J., Walters, M.C., and Giliomee, J.H. 1988. The comparative abundance and in-season distribution of larval infestations of *Busseola fusca* (Fuller) (Lepidoptera: Noctuidae) and *Chilo partellus* (Swinhoe) (Lepidoptera: Pyralidae) on maize. Journal of the Entomological Society of Southern Africa 51(1): 138-140. 4 ref.

Busseola fusca larvae were first observed on maize 4 weeks after plant emergence in South Africa. Maximum numbers of larvae were present during the 8th week. Infestation was lowest in Nov. plantings.

Selective oviposition by *Busseola fusca* was investigated using two maize hybrids of different phe-notypical characteristics (SA33 and SR52). More and larger egg batches were obtained from the hybrid (SR52) with thicker stalks.

The relation between maize yield and infestation by *Busseola fusca* in Tanganyika was rectilinear. Grain yield increased by 35 lb/acre for every 1 per cent decrease in infestation for the higher yield group and by 17 lb for the lower yield group. Economics of control by insecticides and the accuracy of methods of sampling infestations are also discussed.

221 Walker, P.T. 1965. The distribution of loss of yield in maize and of infestations of maize stem borer, *Busseola fusca* (Noctuidae) in East Africa. (Summary(s) in De, Fr, Ru.) International Symposium on Phytopharmacy and Phytiatry 17: 1577-1587. 4 ref.

A mathematical relationship was developed for the interaction between influence of sowing times, levels and frequencies of infestation by *Busseola fusca*, and crop loss of maize in western Tanganyika [Tanzania].

222 Walker, P.T. 1981. The relation between infestation by lepidopterous stem borers and yield in maize: methods and results. (Summary(s) in Fr, Ru.) Bulletin, Organisation Europeenne et Mediterraneenne pour la Protection des Plantes 11(2): 101-106. 33 ref.

Methods used to assess *Busseola fusca* damage are reviewed.
A critical rainfall of more than 10 mm resulted in diapause termination of *Busseola fusca*.

Crop losses due to cereal pests including *Busseola fusca* are studied. Methods of loss assessment and surveys of crop losses are reviewed.

Busseola fusca was one of the principal pests on maize in Togo.

Busseola fusca did not migrate to long distances.

Busseola fusca damage to maize in Ghana is presented in a map prepared by J. Bowden and W.R. Stanton.

Busseola fusca larvae accounted for 44.6 per cent of the total larval population in the month of Aug. in 1970 and were controlled by carbaryl and malathion.

Distribution, pest status, severity of damage, and economic importance of various sorghum pests (including *Busseola fusca*) are given.

Pest Management (General)

Busseola fusca was found on sorghum and maize. Problems faced in the control of stem borers are discussed.

Busseola fusca caused 10 per cent damage to maize in South Africa. Destruction of infested plants, delayed planting, top dressing trap crops with derrisol, winter and early-spring ploughing, and stump removal controlled *B. fusca*. Trap crops in narrow strips and light traps were not effective.

Research on the severity of damage and control of *Busseola fusca* on sorghum in Nigeria is reviewed.

Research on the control of stalk borers [including *Busseola fusca*] on sor-
Biology and control measures of insect pests including *Busseola fusca* in Kenya, Uganda, and Tanganyika on maize and sorghum; *B. phaia phaia* in northern Rhodesia and Tanganyika on *Pennisetum purpureum* and *B. p. segeta* in Uganda and Tanganyika on *P. purpureum* and *Panicum maximum* are reported. *B. sorghicida Thurau* is a synonym of *B. fusca*.

241

Research on the biology and control of *Busseola fusca* in South Africa is reviewed.

242

Distribution and control measures of *Busseola fusca* are discussed. Cultural control (removal of trash and stubbles, destruction of alternate hosts, horizontal laying of stalks, cutting the stalks close to ground, and early sowing), biological control by *Telenomus busseolae*, *Eupelmus* sp., *Procerosinae nigromaculatus* and *Apanteles sesamiae*, and chemical control by furadan, sumicidin, deltamethrin, and endosulfan are recommended.

243

Notes on the control of insect pests including *Busseola fusca* on maize, in Sierra Leone are given.

244

Cultural Control

Damage to maize by *Busseola fusca* in the high veldt region of the Transvaal was greater than 10 per cent. In Potchefstroom, 85 per cent in Jul. and 50 per cent in Aug. of the maize stalks were attacked resp. by about 1,400 and 1,075 larvae per acre. The stumps of the young, cut down maize were covered with earth to control *B. fusca* infestation.

Early planting lowered *Busseola fusca* infestation.

In investigations on the control of stem borers (including *Busseola fusca*) on maize in Nigeria, carbaryl as a wettable powder was the best of 3 insecticides tested in sprays. The economic gain from applying carbaryl on late maize was about 4 times that for early maize. Cultural control by removing stalks and stubble after each harvest did not reduce stem borer populations.

Among the sole crops, *Busseola fusca* infestation was highest on sorghum followed by maize and millet. Due to the inability of *B. fusca* to utilize pearl millet effectively for oviposition, intercropping sorghum with millet in alternate stands within the same row minimized borer infestation.

In Nigeria, partial burning of stalks (to cure them for firewood) immediately after grain harvest killed 95 per cent of the larvae of *Busseola fusca* without any damage to the stalks.

Busseola fusca survived the dry spell on volunteer plants in Ghana. Destruction of grasses, stubble, and sorghum stems left after harvest is recommended for stem borer control.

Young maize was severely damaged by *Busseola fusca* in northern Rhodesia. The pest did not attack farms on which crop residues were regularly destroyed.

Maize with cowpea and sorghum at a land equivalent ratio (LER) of 1.5 and sorghum with cowpea at 1.3 LER are identified as the best cropping patterns for the control of stem borers including *Busseola fusca*.

An improved method of sampling stem and pod borers within an intercropping system is discussed. The frequency of occurrence of *Busseola fusca* was not influenced by cropping patterns.

Seventy per cent of maize planted between Oct. 1929 and Feb. 1930 was infested by *Busseola fusca* in Kenya. Planting maize between 15th Feb. and 31st May, destruction of maize stalks and volunteer maize and top dressing with derrisol (1:600) were recommended.

255

Surveys carried out at Mbita Point in the semi-arid South Nyanza district of Kenya during 1983-85 are reported. *Busseola fusca* is one of the pests studied.

256

Intercropping of cereals with cowpea reduced the population of *Busseola fusca* and other stem borers.

257

Intercropping of sorghum did not affect *Busseola fusca* infestation significantly.

258

Grain yield and stem borer (Acigona ignefusalis [Coniesta ignefusalis] and *Busseola fusca*) infestation were not significantly influenced by the rate and time of nitrogen application in a sorghum/millet mixture in Nigeria during 1984-85. *B. fusca* damage was severe on sorghum in 1984. Borer damage was more severe in the mixture than in the sole crop. Yield of sole sorghum was 5 times that of the mixture in 1984 and two and a half times in 1985.

259

Distribution, biology, sources of infestation, and cultural control of *Busseola fusca* were studied. The impact of wild and cultivated host plants, treatment of crop residues, and planting dates were assessed in the context of non-pesticide management techniques.

260

Placing infested maize and sorghum stalks horizontally for 4 and 2 weeks resp., reduced carry over populations of *Busseola fusca* while those stored upright in stacks contained the highest number of live larvae.

261

Busseola fusca was one of the three borers observed. The pest was dominant at higher altitudes (1160-2500 m) and in cooler areas. Diapausing larvae were found in residues of different lengths, but longer stalks contained more larvae. Placing infested maize horizontally for 4 weeks or sorghum stalks for 2 weeks was effective in reducing *B. fusca* larvae. Early planting of maize in Apr. is suggested to increase yields without using insecticides against the pest.

262

Infestation of late sown maize by second generation *Busseola fusca* larvae was higher (22.5-100 per cent), when compared to that of early sown maize attacked by first generation larvae (0-22.6 per cent).

Burning of cereal residues immediately after harvest was recommended in Botswana to control stem borers including *Busseola fusca*.

Life cycle and cultural control of *Calamistes fusca* [*Busseola fusca*] are discussed. Second brood larvae that bored into the stalks of maize and kaffir corn [sorghum] hibernated as far down as the roots.

Jack, R.W. 1918. A note on the maize stalk borer. Rhodesia Agricultural Journal 15(5): 449-450. *Busseola fusca* moths emerged from soil in a crippled condition when the stalks were buried at a depth of 2 inches. When buried at 4-6 inches, all moths died in the soil without reaching the surface. Deep burial of maize stalks along the furrows during Nov. and Dec. is recommended.

Infestation of *Busseola fusca* was severe due to late planting and weather conditions. Early planting of a number of rows of maize or kaffir corn [sorghum] as a trap crop and planting between 4th and 24th Dec. in Salisbury, Rhodesia [Zimbabwe] are recommended.

Planting four rows of maize 300 yards apart or around the field in smaller areas in Nov., and destroying them along with volunteer maize plants by 15th Dec. is recommended to control *Busseola fusca*.

Maize planted early as a trap crop for *Busseola fusca* was 100 per cent infested and the infestation of the main crop was negligible in southern Rhodesia.

Approximately 85 per cent of *Busseola fusca* larvae on maize in southern Rhodesia hibernated in the stalks above the ground level. Maize planted early was not helpful as a trap crop because of delayed rains and germination.

Parasitoids (Trichogramma chilonis, *T. ostrinia, Apanteles flavipes, Allorhogas pyralophagus, Mallochia pyralidis, Paratheresia claripalpis, Xanthopimpla stemmator*, and *Tetrastichus ayyari*) of stem borers including *Busseola fusca* were released in infested maize and sorghum fields. Only a few recoveries were made.

Slashing maize and sorghum plants in the Transvaal destroyed 70 per cent of stem borers including *Busseola fusca*. Ploughing and discing the plant residues after slashing destroyed a further 24 per cent of the pest population on sorghum and 19 per cent on maize.

Literature on the effects of field sanitation, tillage and mulching, time of planting, multiple and intensive cropping, rotations, spacing, intercropping, use of fertilizers, and irrigation on stem borers including *Busseola fusca* is reviewed.

Uprooting and raking of maize stumps is helpful in controlling *Busseola fusca*. Mechanical appliances were developed for this purpose.

Yield loss caused by *Busseola fusca* larvae was more during early growth stages than at later stages at Njoro, Kenya. Per cent grain yield loss was proportional to the number of borer larvae. Crop residue disposal practices - cut stumps, partial burning, deep ploughing, and harrowing reduced 64, 65, 67, and 89 per cent of live larvae, and 14, 17, 91, and 97 per cent of pupae, respectively.

Topping of young maize leaves when the damage was noticed controlled *Busseola fusca*.

Life cycle of *Sesamia fusca* [*Busseola fusca*] is described. Trap cropping and winter ploughing are suggested for controlling the pest. However, trap cropping is not suitable for the cooler parts of South Africa where maize is planted early to avoid frosts.

No-tillage tended to increase incidence of *Busseola fusca* in maize.

Delayed planting of maize to avoid *Busseola fusca* infestation is recommended.

A single *Busseola fusca* larva could reduce the yield of the stems by 28 per cent of mean dry cob weight. Maize was infested more during the vegetative stages and sorghum towards maturity. Infestation was more in pure stands of sorghum.

Infestation by pests including *Busseola fusca* in different maize/sorghum/cowpea combinations at 3 locations in Kenya is reported.

Sorghum in monoculture, and sorghum intercropped with maize suffered more damage due to *Busseola fusca* than sorghum intercropped with cowpea, or a combination of sorghum, cowpea, and maize.

Infestation by stem borers including Busseola fusca was more in monocultures of sorghum or maize than in a sorghum-maize intercrop. Stem borer build-up was slower at Rongo than at Mbita Point Field Station and Ogongo.

Early sown sorghum was severely infested by Busseola fusca. A carbolic sheep dip (kerol) at 1:350 dilution gave good control when ratooned plants were infested.

Percentage of deadhearts, leaf injury, and tunnelling caused by Busseola fusca on sorghum entries at Samaru, Nigeria, are presented. There was no relationship between deadheart percentage and leaf injury. Tunnelling was heavy. Infestation was more under nitrogen fertilization and low plant density. Varieties SPV 315308d SPV 245 performed well in most of the trials.

Busseola fusca infestation started 10 weeks after emergence (WAE) in all the treatments involving sorghum. Number of pupae per sample increased from 1.48 at 10 WAE to 3.04 at 16 WAE. Alternating 2 rows of sorghum with 2 rows of cowpea reduced B. fusca damage by 20 per cent compared to the monocrop of sorghum.

Infestation of Busseola fusca was observed in a genotype and crop density, and genotype and rate of fertilizer study. Higher fertility plots showed greater damage by stem borer, while crop density levels did not show any significant trend.

Infestation of stem borers including Busseola fusca was highest (32 per cent) in mid-Mar. and lowest (16 per cent) in late-Jan. in Zimbabwe. The early-sown crop yielded 4.69 t/ha while the late-sown crop yielded 0.56 t/ha. Yield losses for 2nd, 3rd, and 4th planting dates were 49, 83, and 88 per cent, respectively.

Literature on the role of cultural practices such as time of sowing, crop rotation, tillage, plant spacing, water management, fertilizer management, removal of deadhearts, field sanitation, removal of alternate host plants, mulching, and intercropping in the management of sorghum stem borers including Busseola fusca, is reviewed.
Wahl, R.O. 1916. Notes on some common insect pests of the vegetable garden. Bulletin, Union of South Africa Department of Agriculture 14:19-24. *Busseola fusca* is controlled by destroying maize plants after removing the cobs. Suggests that plants should not be allowed to remain through the winter.

Wahl, R.O. 1926. The maize-stalk borer (*Busseola fusca,* Fuller). Farming in South Africa 1(8): 279-282. Destruction of maize stalks before Oct. using the crop for fodder and silage, removing the stumps by oxen-drawn barbed wire or railway metal, top cutting, trap cropping, crop rotation, and use of insecticides (derrisol and kymac) are recommended for controlling *Busseola fusca*.

Wahl, R.O. 1930. The maize stalk borer. Farming in South Africa 5(53): 205-206. Trap cropping with maize or sorghum in strips or in the form of small plots is recommended for the control of *Busseola fusca*. Methods of destroying the stubbles are suggested.

Plant Resistance

Adenuga, A.O., and Fasina, A.S. 1987. Screening of maize varieties for resistance to stem borers - *Busseola fusca* (Fuller), *Sesamia calamistis* (Hamps) and others (Lepidoptera-Noctuidae). Nigerian Journal of Agronomy 2(2): 33-39. 9 ref. Maize cultivars were evaluated for resistance to stem borers by visual assessment method. Relative abundance ratio of *Busseola fusca*, *Sesamia calamistis,* and others was 8:1:0 and 7:2:1 in early and late seasons, respectively. Emergence of *B. fusca* adults was low in the late season. Hybrids and early maturing open-pollinating cultivars were more resistant than yellow seeded hybrids.

Barrow, M.R. 1985. The effect of different maize genotypes on the maize stalk-borer, *Busseola fusca* (Fuller) (Lepidoptera: Noctuidae), feeding in whorl tissue. Journal of the Entomological Society of Southern Africa 48(1): 113-119.11 ref. Two resistance factors to *Busseola fusca* were observed in maize - a short lived but effective factor in the whorl tissue that either killed or repelled early-instar larvae; the second which was operative for most of the larval period and retarded larval development.

described. Three resistance factors (the 1st that kills the early instar larvae, the 2nd that repels larvae, and, the 3rd that retards larval development) and their role in integrated pest management are described.

299

Rating systems were developed for host-plant resistance programmes for sorghum pests including *Busseola fusca*. Three hundred and six sorghum lines were tentatively selected from about 4000 lines for possible resistance to *B. fusca* in Nigeria in 1973.

300

Infestation of *Busseola fusca* and *Sesamia calamistis* ranged from 25-36 per cent in 9 cultivars tested at Ikenne and Ilora, Nigeria. None of them was resistant.

301

Severity of damage of stalk borers is described. Screening trials for *Chilo* sp. and *Busseola* sp. resistance, are mentioned.

302

Nearly 6000 indigenous lines were evaluated for *Busseola fusca* resistance under natural infestation and only 1 per cent tolerant lines were identified.

303

Gebrekidan, B. 1985. Breeding sorghum for resistance to insects in eastern Africa. (Summary(s) in Fr.) Insect Science and its Application 6(3): 351-357. 41 ref.

Sources and mechanisms of resistance, screening techniques, and breeding for resistance to stem borers including *Busseola fusca* are discussed.

304

Breeding for resistance to 15 major insect pests of maize including *Busseola fusca* are discussed. The value of biotechnology in breeding for insect pest resistance is considered.

305

Resistance to stem borers (*Busseola fusca* and *Chilo partellus*) as one of the traits to be taken into consideration in developing improved sorghum varieties is emphasized.

306

Distribution, alternative host plants, parasites, and predators of stem borers including *Busseola fusca* are discussed. List of sorghum lines resistant to both *Chilo partellus* and *B. fusca* is given.

307

Three entries from International Sorghum Stem Borers Nursery (ISSBN), identified as tolerant to *Chilo partellus* in India performed well against *Busseola fusca* at Samaru, Nigeria.

308

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1984. ICRI-

Varietal differences relating to seedling deadhearts and stem tunnelling caused by *Busseola fusca* on sorghum under different nitrogen levels, crop densities, and planting dates are presented. Stem borer infestation, percentage of internodes bored, stem tunnelling, and number of borers per plant and entries having lowest and highest infestations in various trials are reported.

309

Breeding maize for resistance to *Busseola fusca* in Nigeria is described.

310

Stem borers of maize and sorghum including *Busseola fusca* are effectively controlled by leaf whorl placement of granular or dust applications of endosulfan, phenthoate, quinalphos, carbaryl, malathion, and fenvalerate. Integration of endosulfan with host plant resistance is discussed.

311

312

Twenty maize cultivars were evaluated for resistance to stem borers including *Busseola fusca*. Four cultivars, Afgoi Composite White, Audinle Local, Antigua-FAW Resistant, and POOL 15 were least susceptible.

313

Busseola fusca infestation, percentage of internodes bored, stem tunnelling, number of borers per plant, varieties showing high and low borer infestations, grain weight per head and 1000 grain weight, in various trials in Nigeria are reported.

314

A 6 X 6 diallel cross indicated polygenic inheritance of resistance to sorghum stem borers including *Busseola fusca*. Resistance to primary damage (deadhearts) was governed by both additive and non-additive genes while secondary damage (stem tunnelling) was governed mainly by additive gene action.

315

Percentage of deadhearts, leaf injury, and tunnelling caused by *Busseola fusca* on sorghum entries at Samaru, Nigeria, are presented. There was no relationship between deadheart percentage and leaf injury. Tunnelling was heavy. Infestation was more under nitrogen fertilization and low plant density. Varieties SPV 315308d SPV 245 performed well in most of the trials.

316

Results of screening for resistance to 4 spp. of stem borers including *Busseola fusca* in western Kenya are reported. It was observed that while *Chilo partellus* was a regular and dominant sp. at ICIPE’s [International Centre of Insect Physiology and Ecology] research station at Mbita Point, *B. fusca* was predominant in farmers’ fields.

317

318

Of 25 sorghum germplasm lines that were screened for resistance to diseases and insect pests, several lines were highly resistant to stem borers including *Busseola fusca*.

319

Breeding decisions made and methodologies used in developing multiple borer resistance involving 8 species of borers including *Busseola fusca* are described. Available information on the inheritance and mechanisms of resistance, results of international testing and evaluation of resistance, breeding methodologies and results of complementary studies that may influence the breeding process is given.

320

321

Fifteen maize genotypes were evaluated for resistance to *Busseola fusca*. Three Mississippi inbred lines (Mp705, Mp706, and Mp707) exhibited pronounced antibiosis to larvae of *B. fusca*. An inbred line with a high content of the antibiotic chemical DIMBOA (GT112R) showed limited resistance to *B. fusca*. Inbred lines previously resistant to *B. fusca* exhibited intermediary resistance, while previously observed differences in resistance of local commercial maize hybrids to *B. fusca* was confirmed. Utilization of larval antibiosis and nonpreference by moths in maize breeding programmes is recommended.

322

Various stages in the infestation process and different stimuli influencing insect response during the course of the establishment of the pest on a host plant are discussed with special reference to *Busseola fusca*. Attempts to introduce resistance factors in maize are briefly reviewed.

Biological Control and Natural Enemies

323

The predacious grasshopper, *Clonia vittata*, Thunb., occurs in Natal in the long grass and
weeds at the edge of maize fields, and its chief food is the larvae, pupae, and adults of *Busseola fusca*.

324
Betbeder-Matibet, M. 1989. Biological control of sorghum stem borers. (Summary(s) in Fr.) Page(s) 89-93 in International Workshop on Sorghum Stem Borers, 17-20 Nov 1987, ICRIISAT Center, India. Patancheru, A.P. 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 15 ref. Biological control of sorghum stem borers including *Busseola fusca* are reviewed. Thirty parasites were recorded on *B. fusca*.

325

326
Brownbridge, M. 1990. Evaluation of *Bacillus thuringiensis* for the control of cereal stem borers. Page(s) 145 in Proceedings and abstracts, V International Colloquium on Invertebrate Pathology and Microbial Control, 20-24 Aug 1990, Adelaide, Australia. Glen Osmond, Australia: Department of Entomology. Aqueous and granular preparations of *Bacillus thuringiensis* protected sorghum from damage by *Chilo partellus* and *Busseola fusca* in field trials conducted in Kenya.

327

Busseola fusca was very susceptible to *Bacillus thuringiensis*. Mortality of 80-100 per cent was obtained with fifth instar larvae on stems dipped in *Bacillus thuringiensis*.

328

329

330

331
Gebre-Amlak, A. 1985. Survey of lepidopterous stem borers attacking maize and sorghum in Ethiopia. Ethiopian Journal of Agricultural Sciences 7(1): 15-26. 7 ref. *Busseola fusca* was one of the 3 stem borers recorded. The pest was dominant at higher altitudes (1160 to 2500 m) and cooler areas. Of 6 parasitoids recorded, *Apanteles sesamiae* was the most widespread. *Diaperastinus erythrocephala* was noticed for the first time preying upon *B. fusca* larva at Welega, Ethiopia.

332

333
Guang, L.Q., and Ogedah, K. 1990. Biology of *Trichogramma* sp. nr. *mwanzai* Annual Report, International Centre of Insect Physiology and Ecology 1989:18. *Trichogramma* sp. nr. *mwanzai* failed to parasitize *Busseola fusca* eggs under natural conditions in western Kenya. Parasitization was observed when the eggs were artificially exposed.
334 Hill, D.S. 1975. Cereal stem borers (especially *Chilo partellus* (Swinh.), *Chilo orichalcociliella* (Strand) (Pyralidae) and *Busseola fusca* (Fuller) (Noctuidae). Page(s) 37-41 in *Agricultural insect pests of the tropics and their control*. Cambridge, UK: Cambridge University Press.

Research on biological control of stem borers (including *Busseola fusca*) in East Africa is reviewed.

Releases of exotic parasites against *Busseola fusca* in East Africa were not successful.

About 85 per cent of *Busseola fusca* larvae hibernated as 6th instar larvae inside dry sorghum stalks. About 65 per cent of the larvae were in the lower 3rd and 30 per cent in the middle 3rd of the stalk. Predation by the ant *Pheidole megacephala* and parasitism by *Cotesia sesamiae* [*Apanteles sesamiae*], *Bracon* sp., *Chelonus* sp., and *Iphiala* sp. were observed. Pupal period lasted for 3 weeks during Oct.-Nov. Some parasites (*Apanteles sesamiae*, *Chelonus curvimaculatus*, *Chelonus* sp., *Pristomerus* sp., *Bracon* sp., and *Iphiala* sp.) and predators (*Pheidole megacephala* and *Dorylus helvolus*) are reported.

Busseola fusca was the only stem borer present at Cedara, Natal. Mass releases of *Xanthopimpla stemmator*, *Tetrastichus ayyari*, and *Trichogramma chilonis* were made. *X. stemmator* and *T. ayyari* were recovered near their release sites.

Parasitoids (*Trichogramma chilonis*, *T. ostrinia*, *Apanteles flavipes*, *Allorhogas pyralophagus*, *Mallochia pyralidis*, *Paratheresia claripalpis*, *Xanthopimpla stemmator*, and *Tetrastichus ayyari*) of stem borers including *Busseola fusca* were released in infested maize and sorghum fields. Only a few recoveries were made.

More than 90 per cent of sorghum plants were infested by *Busseola fusca* and *Chilo partellus* in the Transvaal. Infestation dropped gradually as winter progressed. Parasitism was higher on *B. fusca* when compared to that of *C. partellus*. Some parasites and predators are reported.

342 Kfir, R. (In press.) Alternative, non-chemical control methods for the stalk borers *Chilo partellus* (Swinhoe) and *Busseola fusca* (Fuller) in summer grain crops in South Africa. Technical Communication, Department of Agriculture and Water Supply, Republic of South Africa ? : ?.

Egg, larval, and pupal parasitoids were released in large numbers in South Africa to control *Busseola fusca*. *Xanthopimpla stemmator* and *Tetrastichus howardi* were recovered in the vicinity of the release sites.
Maafo, I.K.A. 1975. Laboratory mass rearing of exotic *Tetrastichus* spp. for the control of maize and sugarcane stemborers in Ghana. (Summary(s) in Fr.) Ghana Journal of Agricultural Science 8(2): 89-93. 6 ref.

The exotic parasites, *Tetrastichus inferens* Yoshimato, *T. Israeli* Mani & Kurian, and *T. ayvari* Rohw. showed high fecundity and helped in controlling stem borers including *Busseola fusca*.

The strains of *Metarhizium anisopliae* and one strain of *Beauveria bassiana* were tested for pathogenicity against larvae of *Chilo partellus* and *Busseola fusca*. The fungi were virulent to both pests.

Bioassays with several strains of hyphomycetes, 2nd-instar larvae of *Chilo partellus* and 5th- to 6th-instar larvae of *Busseola fusca* are summarized. *Beauveria bassiana* and *Metarhizium anisopliae* were pathogenic to both species, *B. bassiana* isolate ICIPE 4, and *M. anisopliae* isolates ICIPE 18 and ICIPE 30 being the most effective.

Information on the occurrence, ecology, natural enemies, and distribution of the stem borers including *Busseola fusca* is reviewed. Introduction of *Sturmiopsis parasitica* into several new areas of Uganda and Kenya is recommended for the control of *B. fusca*. Suggestions for further work are given.

In a test for the suitability of East African graminaceous stem borers as hosts of *Apanteles flavipes* and *Apanteles sesamiae*, *Busseola fusca* was a preferred host second to *Chilo partellus*.

Busseola fusca was accepted for oviposition by *Denticasmias busseolae* when placed in the pupation tunnels of *Chilo partellus*, but was not parasitized in the field in Ethiopia.

Mohyuddin, A.I., and Greathead, D.J. 1970. An annotated list of the parasites of graminaceous stem borers in East Africa, with a discussion of their potential in biological control. (Summary(s) in Fr.) Entomophaga 15(3): 241-274.

Based on surveys of parasites of lepidopterous stem borers, the introduction of *Hyperchalicidia soudanensis* Steffan, a pupal parasite of *Busseola fusca* present in northern Uganda, and northern and eastern Kenya, into Central Tanzania; and a larval parasite of *B. fusca* from southern Tanzania into northern Uganda and northern Kenya is recommended.

Nagaraja, H. 1971. Morphological differences between *Apanteles chilonis* (Munakata) and *A. sesamiae* Cameron (Hym.: Braconidae), parasites on graminaceous moth borers. Technical Bulletin of the Commonwealth Institute of Biological Control 14: 59-61. 1 ref.

Reports experiments in India with *Apanteles sesamiae* which parasitizes *Busseola fusca* and *Sesamia* sp. in Africa.

Odindo, M.O., Otieno, W A , and Oloo, G.W. (In press.) Infection and mortality of the cereal stem borer *Chilo partellus* Swinhoe, *Busseola fu*
sea Fuller, Sesamia calamistis Hampson, and Eldana saccharina Walker on sorghum. Discovery and Innovation?: ?.

Bacillus cells, monococci, fungal spores, conidia, hyphal bodies, granulosis virus, polyhedral inclusion bodies, rhabditids, and microsporidia were isolated from larval cadavers of Busseola fusca.

Chilo partellus and Eldana saccharina were susceptible and Busseola fusca was resistant to Nosema infection in laboratory and field studies conducted at Mbita Point Field Station, Kenya.

In Kenya, a new parasitoid on Busseola fusca eggs was recorded at Gingo. Apanteles sesamiae was common on larvae in the Lake Basin region. Predominance of the pupal parasitoids, Dentichasmias busseolae and Pediobius furvus in field populations of B. fusca at Mbita Point on maize and sorghum monocrops was confirmed.

Evidence of a local isolate of the fungus, Beauveria sp. as the causal agent of mortality of Busseola fusca on farmers' fields is given.

Incidence of pathogens of stem borers including Busseola fusca is reported. Stem borer mortality was low and bacteria appeared to be the most common mortality factor.

Twelve new host records for Braconinae are reported including Merinotus sp. on Busseola fusca in Nigeria.

Busseola fusca attacking maize was parasitized by Chasmias glaucoperus.

Biological control of sugarcane stem borers including Busseola fusca is discussed.

Apanteles flavipes was temporarily established on Chilo partellus and Busseola fusca, but could not be recovered after the winter.

Apanteles sesamiae, the main parasite of Busseola fusca in the eastern Transvaal, infested 2.9 and
59.1 per cent of borer larvae in the months of Feb. and Mar., respectively. Its life cycle and a study on its introduction into Canada are described.

362

Of 9 parasitoids Apanteles sesamiae was the most important mortality factor of Busseola fusca. Mortality was related to both planting date and plant age as parasitism by A. sesamiae was considerably higher in later plantings than in earlier plantings.

363

Of several species of the genus Apanteles on hosts of economic importance, A. sesamiae, Cam., was bred from Sesamia fusca [Busseola fusca], in Cape Colony, Uganda, and Kenya. A list of the hosts and an index to the Ethiopian species of Apanteles are given.

Chemical Control

364

Scorching of maize plants by insecticides did not affect yields. A sheep dip containing derris diluted at the rate of 1:200 is reported to be quite safe to control Busseola fusca.

365
Anonymous. 1927. Top-dressing maize against stalk-borer [Busseola fusca]. Unexpected damage with derrisol. Farming in South Africa 1(10): 392. Severe phytotoxicity to maize was reported following the use of derrisol for controlling Busseola fusca.

366
Anonymous. 1961. Stem borer control at Nchenachena. Report, Department of Agriculture, Nyasaland 1959-60(pt2): 26. Four dusting treatments of DDT with and without nitrogen were tested for the control of Busseola fusca on maize in Malawi. There was no response to nitrogen and all dusting treatments were equally effective in increasing yields. Single application of 5 lb of 5 per cent DDT dust is recommended for short term yield increase, and for long term control over wider areas a second application a fortnight later is suggested.

367

In investigations on the control of stem borers (including Busseola fusca) on maize in Nigeria, carbaryl as a wettable powder was the best of 3 insecticides tested in sprays. The economic gain from applying carbaryl on late maize was about 4 times that for early maize. Cultural control by removing stalks and stubble after each harvest did not reduce stem borer populations.

368

Two granular insecticides, trichlorfon 5G and endosulfan 5G resulted in high mortality (60-100 per cent) of Busseola fusca larvae in Samaru, Nigeria. Due to the short active life of insecticides and the long oviposition period of the insect, up to three applications of the insecticides were required. A device for applying insecticide granules to the whorl is described.

369

Two applications of 1.5 lb carbaryl/acre, either as an 85 per cent wettable powder in 20 gallons of water or as a 5 per cent dust effectively controlled Busseola fusca on early and late sown maize at Ibadan, Nigeria during 1962-65. The insecticides tested reduced infestation and stand loss, especially in late maize, but did not increase grain yield.
Granules of carbofuran, applied into the planting hole at planting, followed by a side dressing 6 weeks later, controlled *Busseola fusca* larvae which entered the stem at the base.

Seventy per cent of maize planted between Oct. 1929 and Feb. 1930 was infested by *Busseola fusca* in Kenya. Planting maize between 15th Feb. and 31st May, destruction of maize stalks and volunteer maize and top dressing with derrisol (1:600) were recommended.

Some emergency measures to control *Busseola fusca* are suggested. Removing the top leaves (up to one-third of plant height) of 5-6 weeks old plants is recommended. In older plants proportionately smaller portion is cut off and the plant is treated with some diluted carbolic dip or an insecticidal dust.

Usefulness of a 500 ml pistol-grip hand sprayer was evaluated using carbaryl in Nigeria. The sprayer facilitated delivery of accurate dosages to each whorl. It was not convenient to control 3rd generation of *Busseola fusca* as the plants were taller.

Two applications of 5 per cent DDT at 14 and 28 days after sowing at rates of 16 and 20 lb/acre, resp., reduced plant mortality and increased yields in trials conducted to control *Busseola fusca* and *Sesamia botanephaga* at the Gold Coast, Ghana.

Derrisol killed 91 per cent of *Busseola fusca* larvae in a trap crop of maize. In further tests, the average infestation was 16 and 97 per cent in treated and untreated crops, respectively.

DDT at 20 lb/acre was applied thrice at fortnightly intervals to control *Busseola fusca* in Uganda during 1953-56. Grain yield did not differ significantly in treated and untreated plots suggesting that considerable stem damage does not necessarily affect cob development.

Both insecticides significantly reduced borer (*Busseola fusca*, *Sesamia calamistis*, and *Eldana saccharina*) infestation during late season. Carbofuran was superior to carbaryl in reducing infestation and increasing grain yield. Infestation was lower when carbofuran was applied as seed dressing than when applied as side dressing 7 days after germination.

Drinkwater, T.W. 1979. The application of systemic insecticides to the soil for the control of the maize stalk borer, *Busseola fusca* (Fuller) (Lepidoptera: Noctuidae), and of Cicadulina mbila (Naude) (Hemiptera: Cicadellidae), the vector of maize streak virus. (Summary(s) in Af, Fr.) Phytophylactica 11(1): 5-11. 9 ref.

Carbofuran applied to the planting furrow at 0.1-0.3 g/m gave better control of *Busseola fusca* than comparable rates of mephosfolan and aldicarb in South Africa during 1974-76.
the incidence of and damage by *Locris maculata*, *Busseola fusca* and *Sesamia calamistis* on maize. (Summary(s) in Es, Fr.) Tropical Pest Management 28(3): 277-283. 17 ref.

A single dose of carbofuran at 1.5 kg/ha applied as granules in the planting hole of maize in Nigeria reduced the incidence of *Busseola fusca*.

380

DDT, endosulfan, and carbaryl, each applied twice at 10 days intervals, reduced *Busseola fusca* infestation by 82.50, 71.50, and 64.25 per cent respectively. Two applications of DDT was more effective than 3 applications of the other two insecticides.

381

Application of insecticides (DDT, endosulfan, and carbaryl) at 4 and 6 weeks after plant emergence gave better control of *Busseola fusca* than with treatments at 2 and 8 weeks.

382

Application of derrisol to maize tops for the control of *Busseola fusca* in South Africa is described.

383

A female sex pheromone of *Busseola fusca* comprising (Z)-11-, (E)-11-, and (Z)-9 tetradecenyl acetates was identified by electroantennography and gas chromatographic analysis. Use of synthetic baits containing all the three acetates in 10:2:2 ratio gave good results in Malawi and Zimbabwe.

384

Poisoned bait was not found to be effective against *Busseola fusca*.

385

Busseola fusca moths did not emerge from maize stalks buried below two inches. Top dressing with derris powder gave good control without scorching the plants.

386

Information on the chemical control of stem borers including *Busseola fusca* on sorghum and maize is reviewed.

387

Stem borers of maize and sorghum including *Busseola fusca* are effectively controlled by leaf whorl placement of granular or dust applications of endosulfan, phenthoate, quinalphos, carbaryl, malathion, and fenvalerate. Integration of endosulfan with host plant resistance is discussed.

388

Infestation of finger millet by *Busseola fusca* at Matopos, Zimbabwe and use of thiodan for its control are reported.
389
Leyenaar, P., and Hunter, R.B. 1977. Effect of stem borer damage on maize yield in the coastal savanna zone of Ghana. (Summary(s) in Fr.) Ghana Journal of Agricultural Science 10(1): 67-70. 4 ref.

Maize yield was reduced considerably in both the seasons of 1975 by stem borers including *Busseola fusca.* Application of a granular formulation of carbofuran (furadan) to the seed at sowing at 0.170 g a.i./hill and to the plant whorl at 0.085 g a.i./plant 6 weeks later resulted in an increase in yield of more than 170 per cent.

390

Sorghum stems, ear stalks, and seed set were severely affected by 2nd generation larvae of *Busseola fusca* in Feb. Chemical control of these larvae was not effective as they bored directly into the stems. Control of the 1st generation larvae on maize during Nov.-Dec. by treating the calyx with DDT was suggested to prevent the infestation on sorghum by the 2nd generation larvae.

391
Parsons, F.S. 1929. Report on the work of the Cotton Experiment Station, Candover, Magut, Natal, for the season 1927-1928. Progress Reports from Experiment Stations, Empire Cotton Growing Corporation 1927-28: 55-89. 5 ref.

Early sown sorghum was severely infested by *Busseola fusca.* A carbolic sheep dip (kerol) at 1:350 dilution gave good control when ratooned plants were infested.

392

Distribution of stem borers of sorghum and maize in Kenya is reported. *Busseola fusca* was dominant at Kissi with 61 per cent infestation. Sources of sorghum resistance to *B. fusca* were identified. Carbofuran (1 kg a.i./ha) was very effective in controlling the pest when evaluated 11 weeks after planting.

393

Derrisol at a strength of 1:150 and sodium fluosilicate dust were helpful in controlling *Busseola fusca,* followed by carbolic sheep dips, disinfectants and a sheep dip containing derris (1:100). Calcium cyanide was toxic to plants and lead arsenate increased larval infestation.

394

A dip containing derris and a carbolic dip diluted at 1:250 and 1:350 resp., applied against *Busseola fusca* combined high killing power and low scorching property.

395

Pulvex (ground derris root) powder at a rate of one teaspoonful per plant and kymac (a sheep dip containing derris) liquid diluted at about 1:250, and powder diluted at 1:450 gave satisfactory control of *Busseola fusca.* Cryolite diluted with water (1:600) was as effective as kymac at 1:300, but was highly phytotoxic.

396

Kymac (sheep dip with derris at a strength of 1:250), and water suspensions of cryolite (1:600) and pulvex (1:540) were helpful in controlling *Busseola fusca.* Pulvex was non-toxic to plants while cryolite and kymac caused mild scorching.

397

Cryolite was effective in controlling *Busseola fusca.* Of 31 materials examined for their adhesive-ness, linseed oil (at 0.348 cc/gm of synthetic cryolite) gave maximum adhesiveness and suspensibility followed by tung oil and boiled fish oil. Treacle, sodium resinate, caesinate, and skim milk reduced adhesiveness.

398
Malathion 50 EC at 1.5 kg a.i./ha, basudin 10 G at 2.0 kg a.i./ha, and basudin 60 EC at 1.2 kg a.i./ha, effectively controlled cereal stem borers including *Busseola fusca*. Integrated methods of control are discussed.

399

Pesticide application during the early stages of plant development was more effective in controlling stem borers including *Busseola fusca* on sorghum in Zimbabwe. Stem borer incidence was higher on the cultivar Segaolane than on Red Swazi.

400

Two sorghum cultivars, Segaolane and Red Swazi were treated with dipterex 25 per cent granules for the control of stem borers including *Busseola fusca*. With a minimum rate of return of 60 per cent acceptable to farmers in the communal areas, application of dipterex gave acceptable returns only to Segaolane.

401

Life cycle, larval diapause, and control of *Busseola fusca* are discussed. The pest had two generations on the main crops of sorghum and maize and a 3rd on sorghum tillers. Diapause was terminated by contact with water. Cob yield increased when treated with DDT.

402

Ethofenprox at 0.1-0.2 kg ai/ha controlled Bussola, Sesamia, *Spodoptera*, and aphids on maize.

403

Treating *Busseola fusca* infested maize plants with 'Little's Fluid Sheep Dip' diluted with water (1:100), applied at one teaspoonful for an 18-inch plant is recommended.

404

In the Transvaal, *Busseola fusca* was controlled by pouring a small cupful of hycol solution (one tablespoonful to one gallon of water) into the tops of each maize plant when about two feet high.

405

Seed dressing with carbosulfan controlled leaf hoppers but did not control *Busseola fusca* and *Chilo partellus*. Carbofuran granules applied to the planting furrow at rates of 15 g and 20 g a.i./100 m row length provided simultaneous control of leaf hopper and stem borers.

406

van Rensburg, G.D.J., and Malan, E.M. 1982. Control of sorghum pests and phytotoxic effect of...
carbofuran on five hybrids of grain sorghum. (Summary(s) in Af.) Phytophylactica 14(4): 159-163. 17 ref.

Application of 10 per cent carbofuran granules at 1.5-2.5 kg a.i./ha to sorghum in South Africa reduced *Busseola fusca* infestation, but was phytotoxic especially in soils with low clay content and during drought stress.

Cloethocarb at a rate of 20 g a.i./100 m controlled *Busseola fusca*. Differences in formulations (granular formulations based on sand, clay, calcium carbonate, and maize meal carriers) did not influence efficacy.

408 van Rensburg, J.B.J., and Walters, M.C. 1978. The efficacy of systemic insecticides applied to the soil for the control of Cicadulina mbila (Naude) (Hem: Cicadellidae), the vector of maize streak disease, and the maize stalk borer *Busseola fusca* (Fuller) (Lep: Noctuidae). (Summary(s) in Af, Fr.) Phytophylactica 10(2): 49-52. 11 ref.

Carbofuran granules applied to the planting furrow at 20 g a.i./100 m row length resulted in better yields when compared to ethoprophos (ethylprop), thiofanox, disulfoton, terbufos, and mephosfolan, in trials conducted to control *Busseola fusca* in South Africa in 1977.

Carbofuran granules (10 per cent) applied to the planting furrow at 10, 20, and 30 g a.i./100 m row length resulted in reduction of infestation by *Busseola fusca*.

Destruction of maize stalks before Oct. using the crop for fodder and silage, removing the stumps by oxen-drawn barbed wire or railway metal, top cutting, trap cropping, crop rotation, and use of insecticides (derrisol and kymac) are recommended for controlling *Busseola fusca*.

Endrin was effective against *Busseola fusca* when applied as 2 per cent dust or 0.03-0.4 per cent emulsion spray. Yield increased up to 2.6 times over the control. A method of testing pesticide residues by exposing 1st instar larvae to direct contact with residues is described.

413 Walker, P.T. 1960. The characteristics of a commercial hand operated granule distributor, the Cook 'Granula,' modified for rows of maize [for controlling insect pests including *Busseola fusca*]. Report, Great Britain Colonial Pesticides Research Unit, CPRU/Porton 176: 4 pp.

The relation between maize yield and infestation by *Busseola fusca* in Tanganyika was rectilinear. Grain yield increased by 35 lb/acre for every 1 per cent decrease in infestation for the higher yield group and by 17 lb for the lower yield group. Economics of control by insecticides and the accuracy of methods of sampling infestations are also discussed.

Attaclay, attapulgite is used for the control of *Busseola fusca*. 73
Walters, M.C., and Drinkwater, T.W. 1975. Preliminary studies on the application of systemic insecticides to the soil for the control of the maize stalk borer, *Busseola fusca* (Fuller) (Lep.: Noctuidae). (Summary(s) in Af, Fr.) *Phytophylactica* 7(4): 121-123. 4 ref.

Carbofuran 10 per cent granules at 1 kg a.i./ha was very effective in controlling *Busseola fusca* when evaluated 11 weeks after planting at Potchefstroom, South Africa in 1975. The other granules tested were phorate, aldicarb, and disulfoton. Phorate treatment reduced plant density.

Pyrethrum marc impregnated with pyrethrins was as effective as dipterex [trichlorfon], one of the insecticides generally recommended in Kenya to control *Busseola fusca*.

Pyrethrum dust (0.2 per cent), synergized with 5 parts piperonyl butoxide, applied to maize at 20 lb/acre was as effective as 5 per cent DDT dust applied at the same rate. Both insecticides reduced the infestation of *Busseola fusca* by 50 per cent and the number of damaged cobs by 40 per cent.

Busseola fusca larvae accounted for 44.6 per cent of the total larval population in the month of Aug. in 1970 and were controlled by carbaryl and malathion.

Stalk borer regulations were brought into operation when *Busseola fusca* infestation on maize was noticed in western Kenya. Maize planted between Feb. and Mar. was more heavily infested. Larvae found on the outer leaves of *Pennisetum purpureum* died eventually. Derrisol controlled the pest effectively.

Legislative Control

A campaign to restrict maize planting to the period 15th Feb.-10th Jun. 1928 for controlling *Busseola fusca* in Kenya is reported.

Busseola fusca caused 85 per cent damage to maize and millet in Kenya. A campaign advocating compulsory notification of the presence of borers, destruction of old maize stalks and volunteer maize, planting dates, and appointment of inspectors is reported.

Describes campaign against *Busseola fusca* on maize and the success achieved leading to temporary revocation of regulations in the campaign.

Stalk borer regulations were brought into operation when *Busseola fusca* infestation on maize was noticed in western Kenya. Maize planted between Feb. and Mar. was more heavily infested. Larvae found on the outer leaves of *Pennisetum purpureum* died eventually. Derrisol controlled the pest effectively.
Destruction of infested maize by 7th Feb. in two districts of Rift Valley Province, Kenya was ordered under the Diseases of Plants Prevention (Amendment) Rules, 1936 to control Busseola fusca. Planting maize before 15th Feb. 1937 or between 31st May 1937 and 15th Feb. 1938 was not allowed.

Other Control Methods

Busseola fusca on maize was monitored by the use of pheromones in Zimbabwe.

The occurrence, biology, and severity of damage of Busseola fusca on maize in Africa are reviewed with special reference to Rhodesia. The possibility of using a sex pheromone for the control of the pest is discussed.

A sex pheromone in virgin females of Busseola fusca was identified as an unsaturated acetate ester. Morphology and histology of the sex pheromone gland are described.

Research on the identification of the sex pheromones of lepidopterous stem borers including Busseola fusca and the use of pheromones in crop protection is reviewed. Pheromone components of various stem borers are listed.

Busseola fusca was the least attracted among the 5 species of stem borers tested in the pheromone and light trap studies in sorghum and maize fields in western Kenya during 1981-82.

The three isomeric components, (Z)-Il-, (E)-Il-, and (Z)-9-tetradecenyl acetates produced by Busseola fusca were synthesized and tested in traps for field attractancy. The components in their natural ratio (10:2:2) were highly attractive to male B. fusca. Individual compounds and binary mixtures were not attractive.

The components of a pheromone released by Busseola fusca females are identified as (Z)-Il-, and (E)-Il-tetradecenyl acetates.

Adult populations of Busseola fusca and Chilo partellus were monitored by trapping, using synthetic pheromone or 1-day-old virgin females, on maize at 5 sites in Kenya, during the 1989 short rains. Weekly moth catches varied significantly between sites. Infestation was very low between 2-10 WAE. No relationships could be established between trap catches, percentage plant damage, and leaf damage ratings.

As part of plant protection research activities in Zimbabwe, an investigation showed that the sex pheromone of Busseola fusca is identified as Cis-9-tetradecenyl acetate.

Trapping rates of Busseola fusca increased with higher concentrations of release inhibitor in a pheromone baited delta trap system in South Africa. Higher loading gave higher trapping rates. Correlations between the light trap catches and oviposition on maize plants 5 weeks after emergence were +0.96 for the cultivar SR52 and +0.99 for A220.

Male-female communication in Busseola fusca was disrupted in fields permeated with synthetic pheromone at Rusinga Island and Mbita, Kenya.

Delayed mating prolonged longevity and pre-oviposition period but reduced oviposition period, fecundity and egg fertility. Highest fecundity (822 eggs) and egg fertility (94 per cent) were obtained when the females were mated on the night of eclosion. Busseola fusca males showed multiple mating ability indicating the inefficiency of mass trapping of males in suppressing pest population. Delayed mating achieved by permeating the field with synthetic pheromone may result in the production of less viable eggs and can be used as a control strategy.

Busseola fusca virgin females were more than 2 times as efficient as synthetic pheromone in attracting males. Mated females and blank water traps did not attract any males.

Traps with a single virgin female of Busseola fusca attracted more males than those with 1 and 5 mg synthetic pheromone for the first 10 days, while the catches were similar for the subsequent 15 days. A dosage of 5 mg was more effective than 1 or 2 mg of synthetic pheromone. Male populations of B. fusca showed a major peak at about 12 weeks after crop emergence and a minor peak 7-8 weeks later.

Integrated Pest Management

Biology of *Busseola fusca*, and methods of maintaining a regular supply of 1st instar larvae, artificial infestation, damage evaluation, development and utilization of resistance involving population and inbred development, and measuring the effectiveness of resistance are described. Three resistance factors (the 1st that kills the early instar larvae, the 2nd that repels larvae, and the 3rd that retards larval development) and their role in integrated pest management are described.

442

443

Busseola fusca was observed on maize and sorghum in Upper Volta [Burkina Faso] in the region below latitude 11 deg 30'N, with an annual rainfall greater than 900 mm. It was also found in Kano and Dutsin-Ma, northern Nigeria. In the Sahel, population of *B. fusca* was lesser than that of *Acigona ignefusalis* [*Coniesta ignefusalis*]. Sorghum leaves were severely damaged by *B. fusca* in northern Nigeria in 1980. Various cultural measures, use of resistant varieties, and release of biological agents, are reviewed in the context of integrated pest management.

444

Literature on control measures and integrated pest management of sorghum stem borers including *Busseola fusca* is reviewed. The impracticality and non adoption of most of the recommended control measures by farmers are stressed. A farming systems perspective and farmer-oriented research approach to stem borer management are suggested.

445

The distribution and importance of 27 lepidopterous stem borers of sorghum including *Busseola fusca* are reviewed, and existing control practices are discussed with a view to developing an integrated approach.

446

Malathion 50 EC at 1.5 kg a.i./ha, basudin 10 G at 2.0 kg a.i./ha, and basudin 60 EC at 1.2 kg a.i./ha, effectively controlled cereal stem borers including *Busseola fusca*. Integrated methods of control are discussed.

447

Studies involving farmers at two locations in Kenya using several components for IPM (intercropping, adjustment of planting time, crop residue disposal, and plant resistance to insect pests) reduced damage to sorghum by stem borers including *Busseola fusca*.

77
Author Index

Abu, J.R 246
Adenuga, A.O. 247,295,367
Aders, W.M. 055
Adesiyun, AA 056,057,058,248, 249,368
Adeyemi, S.A.O. 059,369
Agounke, D. 225
Aikins, J.S. 250
Ajayi, O.1,249,258,370
Akerman, C. 323
Akpaloo, Y. 225
Alawode, D.A. 060
AZZan, W. 061,062,251
Amoako-Atta, B. 252, 253
Anderson, T.J. 063,064,254,371,421,422
Andrews, D. 373
Appert, J. 2
Arnold, H.C. 372
Ayuk-Takem, J.A. 065
Ballard, E. 066
Barrow, M.R. 067,296,297, 298,441
Barry, B.D. 299,373
Beevor, P.S. 068,142,143,383,432,433
Betbeder-Matibet, M 3,324,442
Blair, B.W. 069,070,142,383,427,428,432
Bonzi, S.M. 4, 071,072,073
Bordat, P.D. 325
Boshoff, L. 226
Bosque-Perez, N.A. 074
Botchey, M.A 075
Bowden, J. 044,046,076,374
Breniere, J. 5, 077,231,325
Brownbridge, M. 326,327
Burghardt, G. 436
Campion, D.G. 429,430
Chheda, H.R. 065
Chikonda, M.M. 078
Chorley, J.K. 079,375
CIE (CAB International Institute of Entomology) 080
Cletus, A.T. 081
Coaker, T.H. 376
Coquard, J. 325
Cork, A.142,383,432
Curran, C.H. 328
Cuthbertson, A 329
Daramola, A.M. 300,377
Davies, J.C. 143,433
de Milliano, W.A. 178
Dissemond, A 255,256,257
Donnelly, J. 369
Doumbia, Y.O. 073,082
Drinkwater, T.W. 039,226,378,416
du Plessis, C. 6, 232
Duerden, J.C. 7
Eckebil, J.P. 065
Egwuatu, R.I. 379
Elizabeth, K.A 258
Esele, J.P.E. 083,301
Evans, A.C. 084
Fasina, A.S. 295
Rergusson, N.D.M. 330
Fuller, C. 085
Gebre-Amlak, A 8,086,087,088,089,090,091,
259,260,261,262,331,380,381
Gebrekidan, B. 302,303
Gilliomee, J.H. 210,212,213,214,215,216,217,
362,405
Girling, D.J. 092,332
Greathead, D.J. 349
Grist, D.H. 9
Guang, L.Q. 333
Guthrie, W.D. 304
Haines, G.C. 382
Hall, D.R. 068,142,143,383,426,432,433
Hampson, Sir G.F. 045
Hargreaves, E. 093
Hargreaves, H. 010,094,095,096,097
Harris, K.M. 011,012, 013,098,099,100
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris, W.V.</td>
<td>101</td>
</tr>
<tr>
<td>Hassanali, A.</td>
<td>102</td>
</tr>
<tr>
<td>Heenop, C.H.</td>
<td>233</td>
</tr>
<tr>
<td>Heenop, H.C.</td>
<td>103</td>
</tr>
<tr>
<td>Hepburn, G.A.</td>
<td>395, 396, 397</td>
</tr>
<tr>
<td>Hill, D.S.</td>
<td>014, 015, 334</td>
</tr>
<tr>
<td>Hindorf, H.</td>
<td>256</td>
</tr>
<tr>
<td>Ho, D.T.</td>
<td>104, 431</td>
</tr>
<tr>
<td>Hodson, M.J.</td>
<td>041</td>
</tr>
<tr>
<td>House, L.R.</td>
<td>305</td>
</tr>
<tr>
<td>Hunter, R.B.</td>
<td>389</td>
</tr>
<tr>
<td>IAPSC (Interafrican Phytosanitary Council)</td>
<td>105</td>
</tr>
<tr>
<td>IAR (Institute for Agricultural Research)</td>
<td>106, 234</td>
</tr>
<tr>
<td>ICRISAT (International Crops Research Institute for the Semi-Arid Tropics)</td>
<td>109, 307, 308</td>
</tr>
<tr>
<td>IITA (International Institute of Tropical Agriculture)</td>
<td>309</td>
</tr>
<tr>
<td>Ingram, W.R.</td>
<td>017, 110, 235, 263, 336</td>
</tr>
<tr>
<td>IRA (Institut de la Recherche Agronomique)</td>
<td>111</td>
</tr>
<tr>
<td>IRAT (Institut de Recherches Agronomiques Tropicales et des Cultures Vivrieres)</td>
<td>112</td>
</tr>
<tr>
<td>Irving, N.S.</td>
<td>263</td>
</tr>
<tr>
<td>Isa, A.L.</td>
<td>113</td>
</tr>
<tr>
<td>Ita, C.B.</td>
<td>379</td>
</tr>
<tr>
<td>Jepson, W.F.</td>
<td>019</td>
</tr>
<tr>
<td>Jewell, B.C.</td>
<td>319</td>
</tr>
<tr>
<td>Jordan, F.J.</td>
<td>117</td>
</tr>
<tr>
<td>Jotwani, M.G.</td>
<td>386</td>
</tr>
<tr>
<td>Kamau, G.M.</td>
<td>417</td>
</tr>
<tr>
<td>KARI (Kenya Agricultural Research Institute)</td>
<td>118, 236</td>
</tr>
<tr>
<td>Kaufmann, T.</td>
<td>119, 120</td>
</tr>
<tr>
<td>Kaula, G.</td>
<td>178</td>
</tr>
<tr>
<td>Kfir, R.</td>
<td>121, 122, 271, 272, 337, 338, 339, 340, 341, 342</td>
</tr>
<tr>
<td>Kidega, E.K.</td>
<td>253</td>
</tr>
<tr>
<td>Kilori, J.</td>
<td>352</td>
</tr>
<tr>
<td>Kishore, P.</td>
<td>310, 387</td>
</tr>
<tr>
<td>Knauf, W.</td>
<td>436</td>
</tr>
<tr>
<td>Konate, A.</td>
<td>073</td>
</tr>
<tr>
<td>Kuhn, H.C.</td>
<td>311</td>
</tr>
<tr>
<td>Kundu, G.G.</td>
<td>312</td>
</tr>
<tr>
<td>Kunene, S.</td>
<td>178</td>
</tr>
<tr>
<td>Kuria, J.N.</td>
<td>417</td>
</tr>
<tr>
<td>La Croix, E.A.S.</td>
<td>020</td>
</tr>
<tr>
<td>Labongo, L.V.</td>
<td>161, 162</td>
</tr>
<tr>
<td>Lamborn, W.A.</td>
<td>123</td>
</tr>
<tr>
<td>Lawani, S.M.</td>
<td>273</td>
</tr>
<tr>
<td>Lea, H.A.F.</td>
<td>6</td>
</tr>
<tr>
<td>Lefevre, P.</td>
<td>021</td>
</tr>
<tr>
<td>Lepheana, F.T.M.</td>
<td>178</td>
</tr>
<tr>
<td>Lester, R.</td>
<td>142, 143, 383, 432, 433</td>
</tr>
<tr>
<td>Leuschner, K.</td>
<td>124, 125, 388</td>
</tr>
<tr>
<td>Lever, R.J.A.W.</td>
<td>9</td>
</tr>
<tr>
<td>Leyenaar, P.</td>
<td>389</td>
</tr>
<tr>
<td>Libby, J.L.</td>
<td>126</td>
</tr>
<tr>
<td>Lounsbury, C.P.</td>
<td>022, 127, 237, 274</td>
</tr>
<tr>
<td>Maafio, I.K.A.</td>
<td>343</td>
</tr>
<tr>
<td>MacFarlane, J.</td>
<td>128, 129, 313</td>
</tr>
<tr>
<td>MacFarlane, J.H.</td>
<td>130</td>
</tr>
<tr>
<td>Macharia, M.</td>
<td>131, 275</td>
</tr>
<tr>
<td>Makombe, G.</td>
<td>400</td>
</tr>
<tr>
<td>MaZan, C.</td>
<td>321</td>
</tr>
<tr>
<td>MaZan, E.M.</td>
<td>406</td>
</tr>
<tr>
<td>Mally, C.W.</td>
<td>023, 132, 133</td>
</tr>
<tr>
<td>Maniania, N.K.</td>
<td>344, 345</td>
</tr>
<tr>
<td>Maramba, P.</td>
<td>179</td>
</tr>
<tr>
<td>Mareck, J.H.</td>
<td>074</td>
</tr>
<tr>
<td>Masina, G.T.</td>
<td>134</td>
</tr>
<tr>
<td>Mason, C.</td>
<td>135, 276</td>
</tr>
<tr>
<td>Masyanga, B.S.K.</td>
<td>286</td>
</tr>
<tr>
<td>Matthee, J.J.</td>
<td>024, 390</td>
</tr>
<tr>
<td>Mchowa, J.W.</td>
<td>136</td>
</tr>
<tr>
<td>Megenasa, T.</td>
<td>137, 381</td>
</tr>
<tr>
<td>Mihm, J.A.</td>
<td>319</td>
</tr>
<tr>
<td>MiZner, J.E.D.</td>
<td>346</td>
</tr>
<tr>
<td>Mkamanga, G.Y.</td>
<td>078</td>
</tr>
<tr>
<td>Mlambo, S.S.</td>
<td>138, 238</td>
</tr>
<tr>
<td>Mohyuddin, A.I.</td>
<td>347, 348, 349</td>
</tr>
<tr>
<td>Moore, W.</td>
<td>139, 277</td>
</tr>
<tr>
<td>Morstatt, H.</td>
<td>025, 140</td>
</tr>
</tbody>
</table>
Tchekmenev, S.Yu. 185
Teetes, G.L. 230
Tran, M. 141
Udagawa, T. 402
Ullyett, G.C 361
Unnithan, G.C. 161, 162, 171, 172, 186, 187, 188, 189, 190, 191, 192, 437, 438, 439, 440
USADA (Union of South Africa, Department of Agriculture) 193, 194, 403, 404
Usua, E.J. 037, 047, 048, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206
van den Merwe, C.P. 207
von Eijnatten, C.L.M. 038
van Hamburg, H. 360
van Rensburg, G.D.J. 039, 049, 212, 320, 405, 406
Verma, A.N. 289
Wahl, R.O. 290, 291, 292, 410
Walker, P.T. 040, 041, 218, 219, 220, 221, 222, 223, 224, 244, 411, 412, 413, 414, 415
Walter-Echols, G. 225
Walters, M.C. 210, 212, 213, 214, 215, 216, 217, 226, 293, 322, 362, 408, 409, 416
WAMRU (West African Maize Research Unit) 227
Warui, CM. 417
Weaving, A.J.S. 418
Weltzien, H.C 257
Wheatley, P.E. 228
Whellan, J.A. 042
Whitney, W.K 229, 419
Wilkinson, D.S. 363
Wilkinson, H. 294, 420, 423, 424, 425
Young, W.R. 230
Zampalegre, A. 043
Directory of Institutions and Researchers

This is a provisional listing of the main organizations and individuals who have substantial research interests in *Busseola fusca*. It is based on recent publications and on our own personal contacts. We welcome comments and additions so that a comprehensive, up-to-date directory can be maintained at ICRISAT and at CIE.

Benin
IITA., Biological Control Program, BP 08 0932, Cotonou. (F. Schultess)

Cameroon
IRA Bambui, B.P. 80, Bamenda. (J.A. Ayuk-Takem, H.R. Chheda, J.P. Ekebil)

Cote d’Ivoire
ORTOM-IDESSA, BP 1434, Bouake. (P. Moyal, M. Tran)

Ethiopia
Awassa College of Agriculture, University of Addis Ababa, P.O. Box 5, Awassa. (A. Gebre-Amlak)

Alemaya University of Agriculture, P.O. Box 138, Dire Dawa, Alemaya. (K. Yitaferu)

France
IRAT/CIRAD, B.P. 5035, 34032 Montpellier. (M. Betbeder-Matibet)

India
ICRISAT, Patancheru, Andhra Pradesh 502 324. (K.F. Nwanze)

Kenya
ICIPE, P.O. Box 30772, Nairobi, and ICIPE Mbita Point Field Station, P.O. Box 30, Mbita. (K.N. Saxena, K.V.S. Reddy, G.C. Unnithan, T. Okuda, R.S. Ochieng, A.M. Alghali, E.O. Omolo, E.O. Osir, L.V. Labongo, M.O. Odindo, W.A. Otieno, G.W. Olooo, J. Kilori, R. C. Odhiambo)

ICRISAT Eastern Africa Regional Sorghum and Millets Network, P.O. Box 30786, Nairobi. (V. Y. Guiragossian, S.Z. Mukuru)

Mali
ICRISAT West African Sorghum Improvement Program, B.P 320, Bamako. (A. Ratnadass)

Netherlands
Department of Entomology, Agricultural University, P.O. Box 8031, 6700 EH Wageningen. (A. Polaszek)

Nigeria
ICRISAT West African Sorghum Improvement Program, Plot 419, Yanyawa Avenue, Hotoro GRA Extension, PMB 3491, Kano. (O. Ajayi)

IITA, Oyo Road, PMB 5320, Ibadan. (N.A. Bosque-Perez, J.H. Mareck)

Institute of Agricultural Research and Training, Moor Plantation, P.M.B. 5029, Ibadan. (A.M. Daramola)

Department of Plant Science, Obafemi Awolowo University, Ile-Ife, Oyo State. (A.O. Adenuga, A.S. Falana)

Department of Crop Protection, Ahmadu Bello University, P.O. Box 1044, Zaria. (S. Akinfenwa)

Department of Crop Science, University of Nigeria, Nsukka. (R.L Egwuatu, C.B. Ita)

Department of Crop Protection, University of Agriculture, P.M.B. 2373, Makurdi, Nigeria. (E.O. Ogunwolu)

Department of Crop Production, University of Ilorin, P.M.B. 1515, Ilorin. (A.A. Adesiyun)

Faculty of Science, University of Calabar, P.M.B. 1115, Calabar. (E.J. Usua)
South Africa
Grain Crops Research Institute, Private Bag X1251, Potchefstroom 2520.
(G.D.J. van Rensburg, J.B.J. van Rensburg, J.H. Giliomee, K.L. Pringle, M.C. Walters)

Plant Protection Research Institute,
Private Bag X134, Pretoria 0001.
(R. Kfir, R.W. Skoroszewski, H. van Hamburg)

Pioneer Seed Company P.O. Box 19,
Greytown 3500.
(M. R. Barrow)

Togo
Direction de la Protection Vegetaux,
BP1263,Lome.
(G. Walters-Echols, D. Agounke, Y. Akpaloo)

UK
CAB International Institute of Entomology,
56 Queen's Gate, London SW7 5JR.
(KM. Harris, J.D. Holloway, A. Polaszek)

CAB International Institute of Biological Control,
Silwood Park, Buckhurst Road, Ascot, Berks, SL5 7TA.
(M.J.W. Cock)

Zimbabwe
SADCC/ICRISAT Regional Sorghum and Millets Improvement Project, PO Box 776, Bulawayo.
(K. Leuschner)

Plant Protection Research Institute,
P.O. Box 8100, Causeway, Harare.
(S.Z. Sithole)